
Introduction and Guide to Scripting in
Neverwinter Nights

Contributors marked as known with their work
Compiled by Travis Addington (Papermonk)

Ver 1.0
11/24/2005

Questions, comments? t.addington@gmail.com

Introduction
There’s no doubt than I’m an odd person to be putting this together. And no
doubt something like this is coming a little “late in the game,” so to speak. Yet,
that is exactly why I compiled this information. I’m learning (finally) to script
without the help of tools and finding concise and consolidated information was
near impossible. It was scattered all over the bioboards and while that is a great
resource in and of itself the information is scattered and can be a bit hard to pin
down.
 What I’ve tried to do with this document is to collect all the important
information a beginner or expert scripter may need. I’ve plundered tutorials and
sticky posts for relevant information, inserted some standards into appearance,
spell checks, and organized it.
 It is important to note that none of this work is mine. This is like the
CEP of Scripting information, I just compiled it.
 Now, no doubt I missed important information. If so, point it out.
 Also, some of this information is old and not being proficient myself I have
no way of knowing what may be out of date or trumped by later patches. If you
find something like this, let me know and I’ll fix it.
 As for the late in the game… well, it’s never to late to learn. A great deal of
the basics of NWScript will no doubt still be useful for NWN2 and I will attempt
to keep this up to date when it comes out.

 I’d like to thank all the people who took the time to write out this
information, the people who helped me go through this, and just the NWN
Community and Bioware for the help and support over the years in all my various
endeavors.

I. The Basics - Scripting 101

I. The Basics - Scripting 101.. 3

Celowin's Scripting Tutorial Lesson I – The Basics .. 6
Celowin's Scripting Tutorial Lesson II – Local Variables 11
SETTING VARIABLES .. 16
DEFINING AN OBJECT ... 21
CREATING OBJECTS ... 25
REGARDING ANIMATIONS ... 27
EXPLAINING WAYPOINTS AND WALKWAYPOINTS 32
MORE FULLY-COMMENTED ONSPAWN SCRIPT .. 39
REWARDING GOLD AND XP ... 41
MAKING SKILL CHECKS .. 43
SITTING IN CHAIRS AND SLEEPING .. 48
HOW DO I MAKE MY NPC'S INITIATE DIALOGUE ON THEIR OWN? 51
HOW DO I MAKE MY NPC ATTACK THE PC HE IS TALKING TO? 55
HOW DO I START MY STORE? .. 57
USING MODULE EVENTS .. 59
USING CREATURE EVENTS... 63
USING TRIGGER EVENTS .. 70
QUEST CREATION WALKTHROUGH - NO SCRIPTING REQUIRED............ 72
Celowin's Scripting Tutorial Lesson III - Conditionals .. 76
ADDING & REMOVING EFFECTS ... 84
Celowin's Scripting Tutorial Lesson IV - UserDefined Events 89
USING DIALOGUE WITH PLACEABLES AND TRIGGERS 98
ERFs : WHAT THEY ARE AND WHAT THEY'RE GOOD FOR........................ 105
FACTIONS, SHOUTS AND ATTACKING MY ENEMY 108
Celowin’s Scripting Tutorial Lesson V - NonNPC Scripts 118
Celowin's Scripting Tutorial Lesson VI - Loops... 127
Celowin's Scripting Tutorial Lesson VII – Scripting for Items.......................... 135
Celowin’s Scripting Tutorial Lesson VIII - Functions... 141
Celowin’s Scripting Tutorial Lesson IX - More on Functions: Functions that
Return, Default Parameters, Libraries.. 149
Celowin’s Scripting Tutorial Lesson X - Henchmen ... 160
Celowin’s Scripting Tutorial Lesson XI - Process Example: Bar Brawl 172
Huntsmans Guide To Henchmen (Part 1) - SOU / HOTU Style 194
Huntsmans Guide To Henchmen (Part 2) - One Liners, Interjections and
module transfers. ... 198
Introduction to struct .. 206
Get2daString and Loops.. 211
The SoU Treasure System ... 214

III. HOU Misc Updates.. 217
Post-SOU Doors – Old ones don’t work ... 218
Script Caching... 219
Fun With Petrify ... 219

Adding Crafting Materials to Your Campaign.. 220
How to add more dyekits .. 220
Prestige Class Control Variables .. 222
New scripting functions spotlight .. 223
An introduction to Tile Magic .. 225
Apply/Remove Tilemagic from Specific Tiles .. 226
On Hit Cast Spell .. 229
Intelligent Weapons... 232
Adding Material Components to the Crafting Feats ... 233
How to Disable Crafting Feats.. 234
HOU Problems With Scripts That Use the DelayCommand.............................. 235
Dynamic item properties... 235
HotU OnSpawn and Variables ... 244

http://www.statman.info/conversions/hexadecimal.html.. 251
Antimagic Tutorial ... 251
HotU Wandering Monster System .. 251
Ambient Simulation System ... 254

VI. Appendix I... 255
How do I close a door automatically after it has been opened? 255
How do I make my doors Close and lock? .. 255
How do I make my NPC Open / Close a Door? ... 256
How do I make a portal? ... 256
How do I make my NPC sit. .. 257
How do I make my NPCs stay seated while talking .. 257
How do I take gold from a PC in a conversation? How do I make sure he has
enough to Pay?.. 258
How do I make my NPC recognize me when I talk to him a second time. 259
Why is CreateObject giving me badgers?.. 259
How do I let PCs sit in chairs?.. 260
How do I make a Combat Dummy?... 260
How can PCs gain XP for training at a Combat Dummy / Target. 261
How do I get an NPC to take more than one of the same item from a PC's
inventory?.. 263
How do I get a NPC to leave after I finish a conversation? 264
How do I get an NPC to Check for more than 1 of the same item in a PC's
inventory? option 2 .. 264
How do I make sure the PCs have a certain Item in possession before they are
allowed to rest? ... 265
How do I show the Entire Map to the PC if they buy a map from a merchant
like in the OC?... 266
How can I make it so that after the conversation the NPC will turn back and
face a certain Direction.. 267

How do you use Waypoints with NPCs?.. 268
What function do "#include" or "<span..." do?? ... 269
How do you give each entering PC an Item as they enter the Module for the
First time? ... 271

Can Waypoints Run Scripts? .. 271
I have a script that Adds an Effect to a PC. How do I remove it?...................... 271
What does "!" mean in a Script?... 272
What's the difference between sDest and oidDest? .. 272
How can I make my NPC sit Cross-legged and NOT get up when talked to?.. 272
How does the OnHeartbeat Function?.. 274
I have a script in the "Actions Taken" at the end of a Conversation, but when
the conversation end the NPC just stands there as if the script is not triggered.
... 274
What is a switch/case ? ... 275
I just re-installed NWN. Do I have to re-play all the chapters again to unlock
them? AND How can I open all the chapters in my Toolset without having to
play them all?.. 278
What’s the Basics for making a Merchant? .. 278
Who do I make my NPC say something while in combat? 279
How could I easily add multiple journal entries upon the player entering the
module? ... 279
How do I know what Journal Entry the PC has? ... 280
What's the fastest way to tie the respawn of a PC to a specific way-point? 280
How do I make a lever actually do something? ... 281
How do I strip a PC of all Items and Gold? .. 281
How do I make a placable start a conversation with a PC on Use?................... 282
How do I make a NPC "flee" the area after a conversation? 282
How do I make Floaty Text, or Speech on objects and doors? 283
How can I make a "Level up" Script? .. 283
How do I use the Special Conversations mentioned in the OnSpawn Script? 284
How do I make my NPC turn and face there previous facing after being clicked
on? .. 285
How do I make my NPCs motionless? .. 285
How can I restrict how often PC's can rest? ... 286
How do I combine several scripts to activate on the same event, such as the
OnHeartbeat? ... 287
Is there a way to define which immobile animations you want an NPC to do?
... 288
How do I make a sign use a floaty for its name? ... 288
How do I make the corpse face up? ... 289
Okay, now how to I bring the corpse back to life? (he-he-he) 290
Life after death or Bioware dying, death, and Respawn system........................ 290
What does the ? mean in NW Script?.. 299

VII. Appendix II: Code Error Explanation .. 301
VIII. Appendix III: Waypoints Explained .. 309
VIII. Appendix III: Important Resources ... 314

Celowin's Scripting Tutorial Lesson I – The Basics
Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don't know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

Let's Begin
Open the toolset, and create a new module using the wizard... we'll call it "Test Module".
Create a new area, call it "Test Area 001". Use whatever size and tileset appeals to you,
for the purposes of this lesson it really doesn't matter. (You probably want to keep it
small in size, for ease of finding things. I suggest 2x2.)

Use the "paint creatures" tool to lay down an npc. Give it whatever appearance you wish.

Now, do all the following:
- Right click on the npc you just put down.
- Click on "Properties" from the menu that comes up.
- Change the tag of the npc to SINGER
- Go to the "Scripts" tab.
- There are default scripts in every slot. Click on each slot, and delete the script name.
- Click on the "edit" button next to the "On Heartbeat" slot.
- Type in the following script (Every character needs to be exactly the same.):

NWScript:

void main()
{
 ClearAllActions();
 ActionSpeakString("This is the song that never ends.");
 ActionWait(1.5);
 ActionSpeakString("Yes it goes on and on, my friends.");
 ActionWait(1.5);
 ActionSpeakString("Some people started singing it not knowing
what it was.");
 ActionWait(1.5);

mailto:james.foxglove@verizon.net

 ActionSpeakString("And now they'll keep on singing it
forever, just because...");
}

- I recommend you actually type it in instead of cutting and pasting. You will learn more
about the way the script is written. If you make a mistake, so much the better.... you will
see how important every character can be.
- Click on "Save As" and call it tm_singer_hb
- Check the window at the bottom of the screen. It should say something like: "0 Errors.
'tm_singer_hb' Compiled successfully." If it doesn't, you made a mistake typing. Double-
check yourself.
- Close the script edit window.
- Click "OK" on your npc window.
- Save your module.
- Call up the game, and go to "Other Modules" to start up what you've done.
- Your npc should be singing the little ditty over and over and over...

Analyzing It
Now for the hard part... I'm going to go step by step through what we did, and try to
explain everything. I'll do this in a "question and answer" format, trying to guess at
everything someone might ask.

Why did you call it "Test Module"?

Really, in this case, there is no reason for it, aside from making it something easily
recognized when you go to the Other Modules screen.

Why did you call it "Test Area 001"? Wasn't the default name the toolset assigned good
enough?

For our little test module, it probably doesn't matter. However, it is a good habit to get
into to rename your areas, for purposes of exporting. If you want to take just one area out
of your module, and put it into a different one, it has to have a unique name. If everyone
uses "Area 001" in their module, then importing and exporting areas is problematic.

Why did you give the npc the tag SINGER? Why all capitals?

For a few things, the tag needs to be all capitals. You may never run into this, but it is
again, a good habit to get into.

Also, I recommend giving every creature you paint a simple, easy to remember tag.
SINGER describes the npc perfectly, so it is easy to refer to him in a more complicated
script.

You also want to keep your tags short. I recommend 8 characters maximum.

Why did we delete out all the default scripts? Why do they show up there if we are just
going to delete them?

The default scripts define a number of behaviors that we don't want to deal with quite yet.
For example, depending on what npc you originally painted, it may well have ended up
attacking you when you entered the module. We deleted the other scripts just to keep
things simple – we want our npc to sing the song, and nothing else.

In later lessons, I'll go into making better use of the default scripts.

Why did we put our script in the "On Heartbeat" slot? Why are there so many slots
anyway?

Each one of these slots for scripts defines a time when that particular script is called. The
"On Heartbeat" slot calls the script every six seconds. This is why the npc sings the song
over and over... every six seconds, he sings his four lines.

There are uses for every one of the script slots, depending on the behavior you want. In
fact, the "On Heartbeat" really should be your least used script slot. Too many scripts
firing every six seconds can cause performance issues with your computer.

What is this "void main()"?

This looks rather simple, and the fact that it shows up exactly like this in nearly every
script causes many people to just blow it off. I'm going to attempt to explain it fully here,
but I can't guarantee it will make complete sense until later lessons.

NWScript is coded using "functions," which tell the program what to do. Some functions
are pre-written for us, and we just put them into our code. However, when we are making
scripts, we are in fact writing our own functions. This line is sort of "setting up" our
function.

First the "void". This tells the script what kind of "answer" will come out of the function.
Our little singer is performing actions, but isn't calculating out any sort of an answer. So
the "void" says that the function doesn't actually give an answer.

The "main" says that it is the main part of our script. We can write other functions into
our script, but the "main" one is the part that is called when the script is started.

In between the "(" and the ")" is what kind of input is coming into our script. Again, our
script doesn't need any input, so there is nothing between them. We always need the (and
), even without any inputs.

What about the { and }?

These are used to set off sections of the script. In this case, it is used to say that
everything we have written is part of our "main".

Why does every line inside the main end with ";"?

Basically, to tell the script that it is the end of the line. Some complex instructions won't
fit well on one line. Breaking it up onto separate lines is fine, the program just treats it as
one line until it comes to the semicolon.

You can think of it very much like the period in the English language. (The reason the
semicolon is used instead of a period is to prevent confusion with decimal points.)

What does the ClearAllActions() do?

This is a tricky one, because in this case it actually doesn't do anything. It is put in more
as insurance, hoping that it never actually has a job to perform.

Again, I'll try to explain... every other line in the script is an "Action" command. The npc
doing the actions will do them one at a time, making sure to finish one before it goes on
to the next.

But now remember that our function is assigned to the "On Heartbeat" and will be called
every six seconds. We have seven actions that we want the npc to do, what if he only
finishes 4 of them in the six seconds? There are still 3 actions left to perform, and then
the npc is told to do another 7 actions... so he has 10 things to do now. He does another 4,
and then a new set of 7 instructions comes in... 13 to do now. He will fall further and
further behind. Eventually, this will cause problems.

There are better ways of dealing with this. But for now, it is easiest just to tell the npc to
"forget about everything you still had to do." This is what the ClearAllActions() is for.

If you want to experiment, you edit the script, and change the number inside all the
ActionWait commands from 1.5 to 3.0. You'll see that the npc can't finish the whole song
before he starts it back up again.

While I'm here, let's tie this back with a bit we were discussing a question or two back.
The ClearAllActions is a function, just like main. So once again, having nothing between
the (and) means there is no input to this function.

What about all these other lines in main?

These are all the instructions telling the npc what to do. I think these are pretty obvious,
but I'll try to explain them a bit anyway.

ActionSpeakString has the npc say something. Again, we have a function, but this one
actually does take an input... the text that the npc is going to say. This text is called a

"string", and similar to the English language, needs to be encapsulated by quotation
marks.

ActionWait has the npc sit and do nothing for a number of seconds equal to the number
put into it. So the ActionWait(1.5) has the npc wait for 1.5 seconds between each thing
that is spoken.

Why name the script tm_singer_hb?

Again, you could call it just about anything, but you want to call it something easy to
remember. Standardization is the key.

We use tm to stand for "Test Module." Any script written for test module we will start
with this two-letter code.

"singer" is of course the npc we are attaching the script to. Even though the npc tag was
all capitals, we use all lower case letters for script names. (Note: this is why I recommend
using tags for objects of 8 characters or less... otherwise these script names can get very
long.)

"hb" says that this script is for the heartbeat of the npc.

Why isn't this lesson any longer?

I fully realize that with just this first lesson, you can't yet do a whole lot of scripting on
your own. However, I'd rather do too little than too much, and have people get frustrated
with the amount of information they need to absorb. Give me a couple of days, and
maybe I'll get another lesson cranked out.

[Edited By David Gaider: Friday, 05 July 02:54AM (GMT)]

Celowin's Scripting Tutorial Lesson II – Local Variables

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don't know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up:
Lesson 1

Let's Begin
This lesson will likely be a bit longer than the first one, and deal with some more
advanced concepts. I'm not certain how well I'll be explaining things here, so please ask
questions if you don't understand something. Odds are if what I write isn't clear to you,
there are five other people that want to know the same thing.

Let's just modify the module we started before. Open it up in the editor.

Right click on the npc we have, go to properties, and go to the script tab. (We could make
a new npc, but do we really want this one chanting his song in the background? It gets
old really quickly....)

We're going to need two scripts this time, both short.

The first one goes into the "OnSpawn" handle.

NWScript:

void main()
{
 SetLocalInt(OBJECT_SELF, "SINGER_COUNT", 0);
}

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=78426&forum=47

Save it as tm_singer_os (os for OnSpawn)

Now, even though this is only one line, it is things like this that tend to freak out people
that have never scripted before. So, I'm going to explain this one before I go on to the
"real" script.

First off, note that we're putting this on into a different handle than before. Any script
attached to "OnSpawn" is run exactly once... when the npc first loads into the game.
Because of this, it is ideal for initializing things, which is what we are doing here.

This one line sets up a variable. Think back to your last math course, what was a
variable? A letter which represents a number. That is pretty much the same thing that we
are doing here, except that instead of using a single letter, we give it a longer name.

The command SetLocalInt is the function that is setting everything up. It takes in three
inputs, separated by commas.
- The first is the thing which the variable is "attached" to.
- The second is the name we are giving to the variable.
- The third and final is the value we are putting into the variable.

At this point, I hope the second and third of these make sense... we are calling our
variable SINGER_COUNT and we are giving it the value of 0. It is the first input that
takes a bit more explanation.

Nearly everything in a module is an object. NPCs are objects. Placeables are objects.
Waypoints are objects. Even the pcs themselves are objects. With so many objects
floating around in a module, the tricky part becomes making sure you are referring to the
right one.

OBJECT_SELF is one of the most handy ways to refer to an object. As you might guess,
it is used to refer to whatever object is calling it... in this case, our script was attached to
an npc, so that npc is what is meant by OBJECT_SELF.

Putting all this together... this one line has defined a variable called SINGER_COUNT,
given the variable a value of 0, and stored it with the npc SINGER.

Also of note is that the Int in SetLocalInt stands for "Integer", or basically a whole
number. We can set it to 4, or 0, or –35, but we can't set it to 3.8, for example.

Now, let's go on to the second script. We'll overwrite the OnHeartbeat script from the last
time.

NWScript:

int nCount=GetLocalInt(OBJECT_SELF, "SINGER_COUNT");
void main()
{

 nCount = nCount+1;
 ActionSpeakString("I have spoken "+IntToString(nCount)+"
times.");
 SetLocalInt(OBJECT_SELF, "SINGER_COUNT", nCount);
}

Save it, keeping the name tm_singer_hb

Before I explain this, it is probably a good idea to take a look at what it actually does. So
close your script window, click OK on your npc, and save the module. Start up the test
module, and see how the npc behaves.

This is the first script I have done where we have had anything before the void main(), so
it is worth mentioning. Everything before that is called the "initialization" of the script.
Basically, it sets up things that the script can refer to. Unlike the local variable that we
stored before, this nCount only stays around as long as the script is running. As soon as
the script finishes, it gets rid of nCount. For this reason, the variables created in a script
like this are called "temporary variables."

Notice how many times we used "nCount" inside the body of main. Imagine how long
and confusing the script would be if every time we had to write something like
GetLocalInt(OBJECT_SELF, "SINGER_COUNT") instead of just nCount. Pretty sick,
eh?

Now, the name nCount is another bit of standardization. Any time you declare a
temporary variable, the first letter is a tag to point out what kind of value it takes. The n
stands for integer. According to the code, you could give it any name you want, but by
naming it this way, you know immediately that it must take an integer value. The
"Count" part of the name tells you a bit about what it will be used for.

The "int" says we are defining an integer variable. The "=" means "give it the value of."
And the GetLocalInt retrieves the value of the variable SINGER_COUNT.

Note the similarity of the functions... we used SetLocalInt to set up and store the local
variable, and GetLocalInt to retrieve the value.

So, that very first line does a lot. It creates a temporary variable nCount that the script can
use, and right away gives it the value of the variable assigned to SINGER_COUNT and
stored on our npc. So, the first time this is called, nCount has a value of 0, since that is
what we initialized it to in our OnSpawn script.

I know, this is a lot of explanation for one line of code, and I doubt anyone would digest
it all on one pass. Read through it again, and if it still isn't clear, don't worry too much
about it. This kind of thing makes a lot more sense once you've done a few examples.

Let's move on to the main body of the script, then. Consider the first line:

nCount = nCount+1;

This just takes our temporary variable, and increases it by one. For expressions like this,
it helps some people to read the word "set" in front of the expression. So in words, this
might be read "set the variable nCount equal to the value of nCount plus one."

If nCount starts out with a value of 9, this will set it to have a new value of 10.

(As an aside, another way this can be put into NWScript is to write the line as

nCount++;

The ++ stands for "increment", that is, increase by one. This is fine once you are used to
it, but is generally a bit more confusing for people that are just learning.)

The second line is an ActionSpeakString, but the inside is kind of funny. I've done a few
things here... first, notice that we have three things on the inside, separated with + signs.
When applied to strings (text), the + just adds one string on to the other. So for a simple
example:

"This is a string." would be exactly the same as "This is "+"a string."

There would be no reason to do something like in the above line. But it comes in handy
when we introduce the middle part of the expression: IntToString(nCount). This does
exactly what it says... nCount is an integer. This changes the numerical value that it has
into a string, or bit of text.

This idea can be a bit confusing for a non-coder, so let me try to make an analogy.
Suppose I say something silly like "an elephant wearing a tutu." You immediately get a
picture in your head, and don't think about the individual letters that go into making up
the phrase I said. It is only when you go to write it out that you start thinking a-n-space-e-
l-e-p- and so on.

The computer is the same way. It is storing the value of the variable, and it isn't thinking
about how to "write it out." The IntToString tells it to do that conversion to text so that
the npc can speak it.

The final line you should understand... it just stores the new value of nCount back into
our local variable. Remember that the actual nCount is only temporary, and will be
discarded once the script ends. So if we want the variable to update, we need to store it
again.

Preview of Lesson Three
Lesson two was originally going to be two or three times as long, but I think I'm going to
split it up into separate lessons. However, I just can't leave our last script in the state it is

in... it has an error that just irks me.

If you are detail oriented, you might have cringed a bit when you first tested the script.
The very first words out of the npc were "I have spoken 1 times." Easy enough to
understand what is meant, but not the height of grammar, either.

The way to get around this is by using a "conditional" or "if-statement". I'm not going to
explain this all until Lesson Three, but here is a script that fixes the problem. Just replace
the heartbeat script with this.

NWScript:

int nCount=GetLocalInt(OBJECT_SELF, "SINGER_COUNT");
void main()
{
 nCount = nCount+1;
 if (nCount==1)
 {
ActionSpeakString("This is the first time I have spoken.");
 }
 else
 {
ActionSpeakString("I have spoken "+IntToString(nCount)+"
times.");
 }
 SetLocalInt(OBJECT_SELF, "SINGER_COUNT", nCount);
}

Hopefully, even without explanation, this is somewhat easy to understand. And really,
once you fully understand it, you are probably 80% of the way to writing your own
scripts.

[Edited By David Gaider: Friday, 05 July 02:53AM (GMT)]

SETTING VARIABLES

One of the most common things you will do is set variables and retrieve them... this is the
only way of determining whether most events have taken place or of changing/keeping
track of different story states.

The most common command you will use when setting variables is this:

void SetLocalInt(object oObject, string sVarName, int nValue)

This command sets a 'local integer'. What does it mean by local? It means that the integer
is referenced to, or 'stored on', the oObject you specify (it isn't really stored there
physically, but it's easier to think of it that way).

There are three things that are important to remember, here:

- the 'oObject' has to be a valid object. You will see many commands that return object at
the beginning of their structure (like it says 'void' at the beginning of SetLocalInt). This
means that those commands return data of the type object.
Whatever object you specify is where the integer is referenced to. If you're in dialogue,
using GetPCSpeaker() will return the PC who's talking to the NPC as the object. You can
use GetModule() to store the integer on the module itself... you could use OBJECT_SELF
to reference whatever object is running the current script, etc.
This is important because the variable you choose becomes unique to that object. If you
store a variable by the name of "VARIABLE1" with the value of 1 on the module, that's
the only variable by that name that can be stored there. You could have a "VARIABLE1"
stored on a different object, like a PC, and it could have a completely different value.

- the 'string sVarName' is the name you give to your variable. Make sure it is unique.
Like all strings, it must be enclosed in quotes (like "VARIABLE1" above). Variable
names are not case-sensitive.

- the 'int nValue' is the information you're storing in the variable. Since it is an integer
we're setting with this command, it must be a number (with no decimal places)... such as
1, 15 or 320. If you wanted to store different information here, you need a different
command:

SetLocalFloat = stores a float number (a number with a decimal place)
SetLocalString = stores a string (such as a sentence or word or an object's name... it must
have quotes around it, just like the variable name)
SetLocalLocation = stores a location
SetLocalObject = stores object data (such as a placeable object, an inventory item or a
creature)

How do I use variables?

Well, once you've set a variable on something, it stays there until replaced or destroyed.
At any other time in another script (or the same script) you can call on that variable again
and recall the information stored in it.

If I wanted to recall that integer data I just set in a variable, I would use this:

int GetLocalInt(object oObject, string sVarName)

This is exactly the same command as what you just used to set the variable... minus the
actual value of the data (as that's what you're looking for).

Note that this isn't a void command... it returns an integer, actual information. This means
you don't just use this command on its own. You use it to define either needed 'int' data in
another command or a variable you are setting... like so:

int nValue = GetLocalInt(OBJECT_SELF, "VARIABLE1");

The above means you have just specified a new variable called 'nValue' which is now
equal to the integer that was stored in the OBJECT_SELF under the name of
"VARIABLE1".

Confused yet? Examples...

One great example of how a variable might be used is to track the progression of plots.
Let's say I want to have a variable called "STORY"... when the player accepts the plot, I
set it to 1. When the player finishes the plot, I set it to 2.

The player accepted the plot...
At the point in dialogue where the player accepts, I go to 'Actions Taken' and make a
script that sets the "STORY" variable to 1 on the PC.

NWScript:

void main()
{
SetLocalInt(GetPCSpeaker(), "STORY", 1);
}

The player finishes the plot...
Let's say the player has returned, having done what the NPC wanted. The NPC
congratulates him and the "STORY" variable is set to 2 on the PC.

NWScript:

void main()

{
SetLocalInt(GetPCSpeaker(), "STORY", 2);
}

How do I know if the player has accepted or finished the plot or not?

When it comes to dialogue, you just need to make a new starting node for each condition.
The computer will start from the top and check any scripts in the 'Text Appears When'
section and see if it is TRUE (or if there is no script there, which makes it automatically
TRUE). If so, it starts that node. If not, it continues to the next.

So, with this plot, you'd list the nodes from last to first...

#1. (plot done) "Thank you for doing that plot."
#2. (plot accepted) "Have you finished that plot?"
#3. (not accepted, not done) "Hello there!"

So you need a script which returns TRUE for #1 if the PC has the "STORY" variable on
him set to 2, right? And for #2, the script must return TRUE if the variable is set to 1. No
script is needed for 3, because if both #1 and #2 were FALSE, then the plot has neither
been accepted nor done.

Is the plot done?

NWScript:

int StartingConditional()
{
int nDone = GetLocalInt(GetPCSpeaker(), "STORY") == 2;
return nDone;
}

Is the plot accepted?

NWScript:

int StartingConditional()
{
int nAccept = GetLocalInt(GetPCSpeaker(), "STORY") == 1;
return nAccept;
}

So you'd end up with this:

#1. (1st script in "Text Appears When") "Thank you for doing that plot."
#2. (2nd script in "Text Appears When") "Have you finished that plot?"
#3. (no script) "Hello there!"

In the above script, I only want the NPC to give the plot to 1 person.

At the point when he sets the "STORY" variable on the PC to 1, why not have him set a
variable called "PLOT_GIVEN" to 1 on OBJECT_SELF (the NPC)?

Then when the dialogue branches from the default #3 dialogue (because another PC with
no "STORY" variable on him wanders along and speaks to the NPC), you could have the
dialogue split into two:

|
|
--> (script in "Text Appears When" that returns true if
"PLOT_GIVEN" on OBJECT_SELF returns a 1) "Sorry, no work for you
today."
|
|
--> (no script) "How would you like to do a plot for me?"

A REALLY SIMPLE EXAMPLE QUEST DIALOGUE

The thing to remember is that when you line up your 'starting nodes' underneath the Root,
they should be in reverse order of completion.

Let's say your NPC gave three jobs. Imagine the following structure under the root:

#1. "I don't have any more jobs for you."
#2. "Are you finished job #3?"
#3. "Are you finished job #2?"
#4. "Are you finished job #1?"
#5. "Would you like a job?"
#6. "Hello!"

The thing to remember is that when the NPC is clicked on for dialogue, the computer will
begin scanning the scripts in the 'Text Appears When' part of these nodes. If the script
returns TRUE (or there is no script), that node is initiated. If it returns FALSE, it
continues onto the next node.

The following is a rundown of what scripts would be at each node:

#1 - script in 'Text Appears When' set to return TRUE if "Job" variable on PC set to 4
like so:

int StartingConditional()
{
int nJob = GetLocalInt(GetPCSpeaker(), "Job") == 4;

return nJob;
}

#2 - script in 'Text Appears When' set to return TRUE if "Job" variable on PC set to 3 (set
below). If the PC has finished the job, have NPC give reward and set "Job" variable to 4
(no more jobs) in 'Actions Taken' like so:

void main()
{
SetLocalInt(GetPCSpeaker(), "Job", 4);
}

#3 - script in 'Text Appears When' set to return TRUE if "Job" variable on PC set to 2 (set
below). If the PC has finished the job, have NPC give reward and job #3... set "Job"
variable to 3 in 'Actions Taken'.

#4 - script in 'Text Appears When' set to return TRUE if "Job" variable on PC set to 1 (set
below). If the PC has finished the job, have NPC give reward and job #2... set "Job"
variable to 2 in 'Actions Taken'.

#5 - Script in 'Text Appears When' returns TRUE if "TalkedToJoe" variable on the PC set
to 1 (set below). In the dialogue, if the PC accepts job#1, set the "Job" variable on the PC
to 1 in 'Actions Taken'.

#6 - no script in 'Text Appears When' (if all other scripts above are FALSE, this is the
first time the PC has spoken to this NPC). On the first line, put a script in 'Actions Taken'
that sets a "TalkedToJoe" variable on the PC to 1.

So this is the basic setting and getting of variables. Storing and using string and object
data and other sorts is a little more complicated... but something that is easily caught onto
once you get used to manipulating integers. Hopefully this will get you started.

DEFINING AN OBJECT
Now, this topic is a little more complicated... but I've found myself running into this wall
more than once when trying to do something.

Most actions require an object as the target. The easiest way to define an object is to have
its particular tag handy... which is great if you know what the target object is going to be.
But what if you don't? What if you want to find the nearest PC character... whoever it
might be? What if you want to target the nearest creature? What if you want to check
how far away something is?

There are lots of different way of checking for things like this... I'm going to focus on
three, here: GetNearestCreature, GetNearestObject and GetDistanceBetween.

GetNearestCreature
This command allows you to sort through creatures by their nearness to the object by up
to three parameters. Note that the target does not have to be the first nearest of that type...
that's simply the default. If you wanted to locate the second-nearest non-PC human rogue,
for instance, this is the command that you would use.

The grammar is as follows:

object GetNearestCreature (int nFirstCreatureType, int
nFirstParameter, object oTarget=OBJECT_SELF, int nNth=1, int
nSecondCreatureType = -1, int nSecondParameter = -1, int
nThirdCreatureType = -1, int nThirdParameter = -1)

This may look a bit confusing, but let's go through it step by step.

The 'nFirstCreatureType' and 'nFirstParameter' are the required initial quality that you are
looking for. Say you were looking only for the nearest human... the 'nFirstCreatureType'
would be the attribute CREATURE_TYPE_ RACIAL_TYPE, and the 'nFirstParameter'
would be RACIAL_TYPE_HUMAN.

Make sense? You have up to three qualities that you can narrow your search by... each
requiring both the attribute and the parameter.

The 'oTarget' object is, of course, what the creature you're looking for is near to. It might
be OBJECT_SELF (and that's the default) if you're looking for the nearness to the one
running the script. You could also do something funky like check for the nearest creature
to the nearest PC... but I don't even want to type that out.

The integer 'nNth' is what you use to determine whether you want the first-nearest or
otherwise. The default is the first nearest... but any number you specify here will
determine how many nearer creatures of the parameter you specify are skipped. Note that
any function can be used here so long as it returns an integer... you could put d4() here,
for instance, if you randomly wanted the first- to fourth-nearest.

Here, then, are the list of creature types you can sort by:

CREATURE_TYPE_CLASS = character or monster class
CREATURE_TYPE_DOES_ NOT_HAVE_SPELL_EFFECT = if you were looking for
a particular creature that didn't have a specific spell on him (referenced by the constant
SPELL_*)... I don't imagine this comes up often.
CREATURE_TYPE_SPELL_EFFECT = the opposite of the above, of course... looking
for a creature with a particular spell on him. Note that not all spell effects are 'spells', per
se.
CREATURE_TYPE_IS_ALIVE = self-explanatory, should you wish to skip the dead
ones.
CREATURE_TYPE_PERCEPTION = this is an odd one, as it technically isn't an
attribute of the creature but rather the nature of their perception to the target object... like
whether they can be seen or heard.
CREATURE_TYPE_PLAYER_CHAR = this basically sorts whether a creature is a PC
or not.
CREATURE_TYPE_RACIAL_TYPE = creature race
CREATURE_TYPE_REPUTATION = sorts by faction reputation level to the target.

I won't go through all the particular classes, races and effects that can be used as
parameters since they are pretty obvious. Some of the others are not so obvious, however.

CREATURE_TYPE_IS_ALIVE:
TRUE or FALSE (easy)

CREATURE_TYPE_PERCEPTION:
PERCEPTION_HEARD
PERCEPTION_HEARD_ AND_NOT_SEEN
PERCEPTION_NOT_HEARD
PERCEPTION_NOT_SEEN
PERCEPTION_NOT_SEEN_ AND_NOT_HEARD
PERCEPTION_SEEN
PERCEPTION_SEEN_AND_HEARD
PERCEPTION_SEEN_ AND_NOT_HEARD

CREATURE_TYPE_PLAYER_CHAR:
PLAYER_CHAR_IS_PC
PLAYER_CHAR_NOT_PC

CREATURE_TYPE_REPUTATION:
REPUTATION_TYPE_ENEMY
REPUTATION_TYPE_FRIEND
REPUTATION_TYPE_NEUTRAL

So, then... how do we find the nearest PC character to myself?

GetNearestCreature (CREATURE_TYPE_PLAYER_CHAR,
PLAYER_CHAR_IS_PC);

The nearest enemy wizard to myself?

GetNearestCreature (CREATURE_TYPE_ REPUTATION, REPUTATION_ENEMY,
OBJECT_SELF, 1, CREATURE_TYPE_CLASS, CLASS_TYPE_WIZARD);

The nearest living enemy to my nearest PC ally?

GetNearestCreature (CREATURE_TYPE_ REPUTATION, REPUTATION_ENEMY,
GetNearestCreature (CREATURE_TYPE_ PLAYER_CHAR,
PLAYER_CHAR_IS_PC, OBJECT_SELF, 1, CREATURE_TYPE_ REPUTATION,
REPUTATION_FRIENDLY), 1, CREATURE_TYPE_ IS_ALIVE, TRUE);

The nearest non-PC that I can see?

GetNearestCreature (CREATURE_TYPE_PLAYER_CHAR,
PLAYER_CHAR_NOT_PC, OBJECT_SELF, 1, CREATURE_TYPE_ PERCEPTION,
PERCEPTION_TYPE_ SEEN);

GetNearestObject
This is much less complicated simply because you can only sort objects by their type...
you don't have the multiple parameters that creatures do. Otherwise, however, it works
much the same:

object GetNearestObject (int nObjectType=OBJECT_TYPE_ALL, object
oTarget=OBJECT_SELF, int nNth=1)

The 'nObjectType' is, obviously, the kind of object you're looking for. If you don't specify
anything, than it will be the nearest object of any kind.

Again, the 'oTarget' object is what your checking the nearest object in relation to...
default is OBJECT_SELF, though it doesn't have to be.

'nNth' is the integer that allows you to go beyond the 'nearest'... an nNth of 3 would look
for the 'third nearest', for example.

The object types, then, are:

OBJECT_TYPE_ALL
OBJECT_TYPE_AREA_OF_EFFECT
OBJECT_TYPE_CREATURE

OBJECT_TYPE_DOOR
OBJECT_TYPE_INVALID
OBJECT_TYPE_ITEM
OBJECT_TYPE_PLACEABLE
OBJECT_TYPE_STORE
OBJECT_TYPE_TRIGGER
OBJECT_TYPE_WAYPOINT

GetDistanceBetween
This reports the distance (in meters) between two valid objects. It is important that both
objects be valid, else the distance returned will be 0.

float GetDistanceBetween(object oObjectA, object oObjectB)

(what's a float, incidentally? A float, like an integer, is just a number... but a float always
has decimal places. '50' would be an integer... '50.0' would be a float. If you need to, you
can use the command int FloatToInt(float fFloat) to convert a float to an integer.)

If you're simply checking how far something is away from the creature or object that is
running the script, it is actually easier to use this command:

float GetDistanceToObject(object oObject)

That way you don't have to constantly specify OBJECT_SELF in the
GetDistanceBetween command.

[Edited By David Gaider: Saturday, 06 July 04:48AM (GMT)]

CREATING OBJECTS

object CreateItemOnObject(string sItemTemplate, object oTarget =
OBJECT_SELF, int nStackSize = 1)

This creates an item (with the tag of the 'sItemTemplate') in the oTarget object's
inventory. We use this often when items are 'given' to a PC... or if, say, an NPC is
supposed to have an object on them only at certain times.

If I'm in dialogue and the NPC rewards the PC he's talking to with a regular longsword, I
would put a script with this line in the 'Actions Taken' section:

CreateItemOnObject ("NW_WSWLS001", GetPCSpeaker());

If I want to put 12 regular arrows into a chest that has the tag "CHEST05":

CreateItemOnObject ("NW_WAMAR001", GetObjectByTag ("CHEST05"),
12);

(NOTE: If you use ActionGiveItem to have an NPC give an inventory item to the PC,
that item must actually exist in the NPC's inventory in order for the action to complete.
ActionGiveItem will transfer the item to the PC's inventory... CreateItemOnObject
creates an entirely new one there.)

(2nd NOTE: I mention that the sItemTemplate used in the command is the item's 'tag'...
this is true ONLY for the standard items that come with the game. Sorry, my bad: this is
all I'm used to using with this command. If you are trying to use the command with
custom items, you must use the blueprint resref for the item... not the tag.)

The 'CreateObject' command is a little bit different. It actually creates the object on the
map... this is often referred to as 'spawning'. The object could be a creature or an item. It's
structure is as follows:

object CreateObject (int nObjectType, string sTemplate, location
lLoc, int bUseAppearAnimation = FALSE)

The 'nObjectType' is a constant that defines what class of object is being created.
OBJECT_TYPE_CREATURE, for example, or OBJECT_TYPE_ITEM. This comes
from the list of Constants in your script editor.

The 'sTemplate' string is its 'blueprint resref'. Yes, I know... almost every other command

uses an object's tag. This one refers to the resref, usually found under the Advanced tab
of the object.

NOTE: The above is a very common misconception! If you use a tag instead of a resref,
it will not work!

The location consists of an area, an xyz map co-ordinate (which, itself, is known as a
'vector') and a facing. It is easiest to use a GetLocation(object oObject) command to get
all this information from a waypoint or another object (if you use an object such as a
creature, then the spawn will occur in the nearest 'valid' location to it). If need be, you can
also construct a location using Location(object oArea, vector vPosition, float
fOrientation)... though that, quite frankly, is often easily avoided.

The default, obviously, is for the standard appearance animation to not be used... you can
opt to use it by specifying TRUE for 'bUseAppearAnimation'.

So... to create a bugbear at an already-laid waypoint that has the tag "WAYPOINT1"...

location spawn1 = GetLocation (GetWaypointByTag ("WAYPOINT1"));
CreateObject (OBJECT_TYPE_CREATURE, "NW_BUGBEARA", spawn1);

To spawn in a wizard (with the tag "wizard01") with the creation effect, facing the
nearest PC...

NWScript:

void main()
{
 object oWay = GetWaypointByTag("WAYPOINT1");
 vector vPos = GetPosition(oWay);
 vector vPC =
GetPosition(GetNearestCreatureToLocation(CREATURE_TYPE_PLAYER_CHA
R, PLAYER_CHAR_IS_PC, GetLocation(oWay)));
 location lPos = Location(GetArea(oWay), vPos, GetFacing(oWay));
 CreateObject(OBJECT_TYPE_CREATURE, "wizard01", lPos, TRUE);
}

ONE LAST THING ABOUT TAGS: Remember that they are case-sensitive! If the tag
reads on your creature "wizard01" don't refer to it in your scripts as "WIZARD01" or
"Wizard01"... it will not acquire the creature object properly and you will get a badger
spawned in. Why a badger? This was simply the 'default summon' used during testing in
case an invalid object was referenced for a spawn.

[Edited By David Gaider: Monday, 29 July 11:47PM (GMT)]

REGARDING ANIMATIONS
You basically have two choices when adding animations to your creatures in the game.
Adding them directly or using the automatic functions in the generic AI.

Adding Animations Directly
The first thing to realize when you are dealing with scripting animations is that not all
creatures have all animations. As a rule of thumb, if the creature is a PC race (human, elf,
dwarf, half-orc, gnome or halfling), then it will have all the animations. If the creature is
a humanoid monster (bugbear, goblin, etc.) then very likely it has most if not all
animations. Non-humanoid monsters and especially birds will be very limited in their
animations.

The Action Queue
The second thing to know when scripting animations is how to use the action queue.
There are a number of scripting commands which start with the word 'Action'... when a
creature calls these commands on themselves, it places the action into a queue. It will
finish one action completely and then move onto the next in line... up until the point there
are no more actions or a ClearAllActions() command is issued.

The reason this is important is that there are two main commands that deal with
animations: ActionPlayAnimation and just PlayAnimation. ActionPlayAnimation places
the command to perform the animation in the queue... PlayAnimation tells the creature to
do the animation immediately as soon as it is reached in the script, overriding anything
else going on in the queue.

If I wanted to script someone to move to a particular waypoint and then meditate for 6
seconds, it would look like this:

NWScript:

void main()
{
 object oTarget = GetNearestObjectByTag("WAYPOINT1");
 ActionMoveToObject(oTarget);
 ActionPlayAnimation(ANIMATION_LOOPING_MEDITATE, 1.0, 6.0);
}

The creature would then move to the waypoint and wait until he got there before he
began playing his meditation animation.

If I wanted to set a variable when he was finished all that, I would also have to add it into
the queue. You can do this with the ActionDoCommand(). This places a non-Action
command into the queue.

NWScript:
void main()
{
 object oTarget = GetNearestObjectByTag("WAYPOINT1");
 ActionMoveToObject(oTarget);
 ActionPlayAnimation(ANIMATION_LOOPING_MEDITATE, 1.0, 6.0);
 ActionDoCommand(SetLocalInt OBJECT_SELF, "Done_Meditation", 1);
}

If I did the SetLocalInt command without putting it into the queue, then it would fire as
soon as that point in the script was reached... probably well before the creature even
reached the waypoint.

The two commands for animations are as follows:

void ActionPlayAnimation (int nAnimation, float fSpeed=1.0, float fSeconds=0.0)
- The 'nAnimation' is Constant for the animation being played.
- 'fSpeed' is the speed at which the animation is played... you could have a creature turn
its head very slowly or very quickly, for instance... 1.0 is normal speed.
- 'fSeconds' is only used for looping animations (like the meditation)... it determines how
long you wish the animation to be played. If left blank on a looping animation, it will
play that animation until told to do something else.

void PlayAnimation (int nAnimation, float fSpeed=1.0, float fSeconds=0.0)
As mentioned, this is the same as the ActionPlayAnimation command, except that the
animation is not placed in the queue... it is played immediately.

Animation Constants
You can find a list of all the animation constants (used in the 'nAnimation' portion of the
command) by selecting the 'Constants' button in your script editor... all the constants
begin with ANIMATION_*.

There are two types of animations: 'fire-and-forget' (or FNF), which only plays once and
no duration is needed, and 'looping' which play as long as needed and a duration is
required for.

A reminder once again: NOT ALL MODELS HAVE ALL ANIMATIONS. Just to
mention, too, that the animations listed in the constants are not every animation that a
model is capable of (there is a dying animation, after all, as well as combat animations
and others)... this is just the current list of the ones that can be played via script.

Using Generic AI Animations

For a quick and easy solution to adding some life to your placed creatures, the generic AI
has two functions that you can use.

In the generic OnSpawn script ("nw_c2_default9"), there is a whole list of commands
that are all commented out (they are preceded with a '//' double slash that colors them
green and prevents them from being compiled). To use the built-in animations, you
simply need to comment back in (remove the '//') one of the following commands:

NWScript:

SetSpawnInCondition(NW_FLAG_AMBIENT_ANIMATIONS);

SetSpawnInCondition(NW_FLAG_IMMOBILE_AMBIENT_ANIMATIONS);

Don't worry about the comments that are on the same line with these commands... that
just tells what they do. Simply erase the double-slash at the beginning of the line.

Then you re-compile the script and save it as a different file. And that's it... that's all you
have to do.

What do these do?

Basically they are called in the OnHeartbeat event (meaning the script will 'activate'
every 6 seconds). The script checks to make sure that the creature is not asleep, not in
combat, not in conversation and no enemy is in sight... if all those are okay, it plays the
animations.

'ambient animations' means that the creature will move about randomly, occasionally
stopping to turn to nearby friends (creatures with a friendly reputation) and play what
social animations it has (and, yes, this will work on any type of creature.. it will do what
it can for those creatures who don't have the full range).

'immobile ambient animation' does the same thing... without the random movement. The
creature stays in place.

So you can put down several of these types of creatures, for instance, and they will turn
to each other at random intervals and seem to chat, laugh, argue... and even mill around
and mingle, with the ambient animations.

Do the placeable object animations work the same way?

Yes. You can tell a chest to open by having it run its
ANIMATION_PLACEABLE_OPEN, or a lamp post to turn off using
ANIMATION_PLACEABLE_DEACTIVATE. A few things to keep in mind:

1) For placeable objects that are sources of illumination (such as the lamp post), it is not
enough to just use its ANIMATION_PLACEABLE_DEACTIVATE or
ANIMATION_PLACEABLE_ACTIVATE. That just affects the glowing part of the
animation, itself. You must also use the SetPlaceableIllumination command set to TRUE
and tell the area it's in to RecomputeStaticLighting.

The following is an example of placeable illumination use:

NWScript:

// will turn the lightable object on and off when selected
// placed in its OnUsed event
void main()
{
 if (GetLocalInt (OBJECT_SELF,"NW_L_AMION") == 0)
 {
 SetLocalInt (OBJECT_SELF,"NW_L_AMION",1);
 PlayAnimation (ANIMATION_PLACEABLE_ACTIVATE);
 SetPlaceableIllumination (OBJECT_SELF, TRUE);
 RecomputeStaticLighting (GetArea(OBJECT_SELF));
 }
 else
 {
 SetLocalInt (OBJECT_SELF,"NW_L_AMION",0);
 PlayAnimation (ANIMATION_PLACEABLE_DEACTIVATE);
 SetPlaceableIllumination (OBJECT_SELF, FALSE);
 RecomputeStaticLighting (GetArea(OBJECT_SELF));
 }
}

2) Doors are not placeable objects. First thing you should know about them is that if the
door is unlocked, a creature who is told to move to a point on the other side of one will
automatically open it.
Beyond that, the commands for doors are as follows:

- ActionOpenDoor: If used in the script of a creature, it will move to the door and open it
(if it is unlocked). If used in the script of the door (or the command is sent to the door
object via AssignCommand), then the door will open itself.
- ActionCloseDoor: As above, only the door is closed.
- ActionLockObject: If used in the script of a creature, it will move to the object (can be a
door or placeable) and attempt to use its Open Locks skill to unlock it. ONLY call it in
the script of a creature!
- ActionUnlockObject: As above, except the door or object is unlocked.
- SetLocked: This is the command you use if you want a door or object to be set to locked

or unlocked without the aid of a creature or skill. If 'bLocked' is set to TRUE, the object
will be locked... if set to FALSE, it will be unlocked. (example: if called in a door's own
script, SetLocked (OBJECT_SELF, TRUE) will cause it to be locked.)

NWScript:

// set in a door's OnHeartbeat script, this will cause
// it to close and lock itself at dusk
// and unlock itself at dawn
void main()
{
 if (GetIsDusk() && GetIsOpen (OBJECT_SELF))
 {
 ActionCloseDoor (OBJECT_SELF)
 // SetLocked is set in an ActionDoCommand because we
 // want it to be in the door's queue... we want the
 // ActionCloseDoor to be completed before locking the door
 ActionDoCommand (SetLocked (OBJECT_SELF, TRUE))
 }
 else if (GetIsDawn() && GetLocked (OBJECT_SELF))
 {
 SetLocked (OBJECT_SELF, FALSE);
 }
}

EXPLAINING WAYPOINTS AND WALKWAYPOINTS

A waypoint is an invisible object that is placed in an area to mark a specific location. It
has its own tag (which you can set when it is created) and can optionally be made into a
'map note' (one could be labeled 'General Store', for instance, and in the mini-map an icon
would appear where it was located... if the player moved his cursor over that icon it
would display its label).

The generic AI that comes with NWN is set up so that you can get creatures you set down
to walk a circuit of these waypoints automatically.

How is this done? It all has to do with the tag you assign to the waypoint. Take the tag of
the creature(s) you want to use the waypoint... add the prefix "WP_" and the suffix
"_0X"... and the creature will automatically begin walking them in that order.

Example:
I have an NPC guard who I have given the tag "GUARD". I lay down four waypoints
which form his patrol circuit. I give them the tags "WP_GUARD_01",
"WP_GUARD_02", "WP_GUARD_03" and "WP_GUARD_04".
According to the default AI, when the game started he would proceed to the nearest
waypoint (whether it is "WP_GUARD_01" or not) and then move to the next waypoint in
numerical order. He keeps going, in order, pausing 1 second at each one. Once he got to
"WP_GUARD_04" he would start back to "WP_GUARD_01". If he saw anything hostile,
he would move to attack... and, once the combat was over, he would return to his patrol.

The above is the simplest use of the waypoints, of course... there are many other ways to
tweak it. There are likely a few questions right off the bat that might arise:

1. If I used a lot of waypoints for my NPC's, there could be a LOT of waypoints on the
screen!
One waypoint doesn't only have to serve one creature... it serves one creature tag. More
than one creature can have the same tag, if you wish.
There are also four different colored appearances that you can set on the waypoints to
distinguish them from each other.
Even so, you could have quite a few in any given area, depending on what you were
doing. Fortunately waypoints don't run scripts or take up any graphics processing power
by their existence. If they get in the way of you seeing things in the toolset, there is a
button which allows you to screen them out of view (there are buttons for other things,
too, if you don't wish to view objects, creatures, items or whatever).

2. It sounds like a lot of work to re-name all the tags on those waypoints.
You could edit each waypoint and change its tag if you wanted to. Fortunately you can
hold down the SHIFT key and select the waypoints in the order you want them... then
right-click the mouse button and select 'Create Set'. If you provide the tag name
('WP_GUARD' in the above example), it will automatically change their tags and add on
the numbered suffixes for you.

3. What if I want part of the circuit to cross an area transition... like going into a house
or something?
This works fine. I suspect you would have to have a regular area transition created by the
wizard (the ones in triggers and doorways), however... not a transition that you scripted
yourself.
I recently creating a peasant who walked four waypoints, two of them being in another
area (inside a house). I then planted a house tile in the main area and connected the two
with a door. He left the door open after he used it the first time, but otherwise it worked
fine.

More Advanced Uses

Posts: Instead of walking waypoints, you can assign a creature to a 'post'. Lay down a
single waypoint with the prefix 'POST_' added to the creature's name.
The creature will then remain at his post. If he moves from it to engage in combat, he will
return to it as soon as he is done.

Day/Night Activities: In the generic OnSpawn script, you can uncomment a command
called 'SetSpawnInCondition (NW_FLAG_DAY_NIGHT_POSTING)'. This will tell the
creature to differentiate between night and day.
How does this affect waypoints? Well, you can give a creature a different set of
waypoints to walk (or a different post) in the day and night by changing the prefix of
your waypoints:

day waypoint: prefix "WP_"
night waypoint: prefix "WN_"
day post: prefix "POST_"
night post: prefix "NIGHT_"

So you could set up the guard in the example to walk his waypoints during the day. Then,
if that flag was uncommented in the OnSpawn script, you could set a "NIGHT_GUARD"
waypoint in his barracks that he would return to that spot when it was dark.

One thing to remember is that when you make any changes to the OnSpawn script, make
sure you save it under a different name before compiling... else you'll make a global
change that will affect every creature in your module.

THE USERDEFINED EVENT IS YOUR FRIEND

Seriously. No joke at all here. There will naturally be some users who will prefer to go
deeper and customize the various scripts that make up the generic AI... some will even go
further than that and come up with their own versions of the generic AI include file.
That's great, and there's nothing wrong with doing that.

The great thing is: you don't have to. 98% of the creature scripting that was done in the
NWN official campaign was done using UserDefinedEvents. I sat down with Preston
(one of our scripters and one of the main guys behind the generic AI) and fired off a rapid
series of things I would like to script... just about every one was do-able using the
UserDefinedEvent. And it is easy to implement.

Let's back up for a second here and discuss what an event is. Basically there are
numerous scripts (sets of instructions) that exist on a creature... and each one is tied to
events. When an event occurs, it tells the creature to fire off the proper script. No event =
the script doesn't run.
There are a number of events which get mentioned here a lot. The 'OnHeartbeat' event
fires every 6 seconds... so the script attached to that even runs that often. The
'OnPerceived' event fires whenever the NPC perceives anything... the script attached gets
run. These scripts can even fire off other events, prompting different scripts to be run...
and therein lies the UserDefinedEvent.

Basically, the UserDefinedEvent allows you to access the normal events a creature uses
(OnPerception, OnDeath, etc.) without disturbing the normal AI routines or modifying
the already-existing scripts.

Using the UserDefinedEvent
There is one script on every creature that has been mentioned lots before, and it's one you
will get to know well. This is the OnSpawn script. This is an event that runs only once
when the creature first comes into existence... think of it as an 'initializing' script.

The generic OnSpawn script has a whole series of commands in it which are commented
out... as a matter of fact, without the user changing anything in it, all that large script
really does is three commands: it tells the creature to walk waypoints that refer
specifically to its tag, set up its listening patterns (so it will respond to shouts from other
NPC regarding combat) and generate a small amount of generic treasure in inventory
(some gold, etc.)

It is designed to allow the user to set states that access the generic AI, as they wish. All

they do is go through the list and uncomment any state flags they wish to use (remove the
'//' double slashes at the beginning of the command). Then save the OnSpawn script under
a different name and use it in place of the regular one... voila, the generic behaviors have
been altered.

The state flags we need to pay attention to are these:

SetSpawnInCondition (NW_FLAG_PERCIEVE_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1002

SetSpawnInCondition (NW_FLAG_ATTACK_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1005

SetSpawnInCondition (NW_FLAG_DAMAGED_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1006

SetSpawnInCondition (NW_FLAG_DISTURBED_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1008

SetSpawnInCondition (NW_FLAG_END_COMBAT_ROUND_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1003

SetSpawnInCondition (NW_FLAG_ON_DIALOGUE_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1004

SetSpawnInCondition (NW_FLAG_DEATH_EVENT);
//OPTIONAL BEHAVIOR - Fire User Defined Event 1007

What Next?

Okay... you've uncommented the flags you want to script for and re-saved the OnSpawn
script. That's taken you 2 minutes. Now how do you use it?

Every creature has an OnUserDefined event section that you can put a script in. For any
creature you make, it will be completely blank... this is where you do your actual
scripting. Any script you put here will be 'checked' every time an event of the type you
uncommented occurs. So if you uncomment the 'SetSpawnInCondition
(NW_FLAG_DISTURBED_EVENT)', then every time the creature's inventory was
disturbed (say someone pickpockets an item), the OnUserDefined script would also be
run.

The basic OnUserDefined script would look similar to this:

NWScript:

void main()
{
 int nUser = GetUserDefinedEventNumber();

 if (nUser == the number in the OnSpawn, from 1001 to 1007)
 {
 (do something)
 }
}

Let's say I want to make a creature wave to the first PC that he sees. I go into the
OnSpawn an uncomment 'SetSpawnInCondition (NW_FLAG_PERCIEVE_EVENT)' and
then re-save it as a new script.

Then I create a script for the OnUserDefined perhaps as so:

NWScript:

// this script will make the NPC wave to a PC upon perceiving
them
// remember that if the PC starts off the module in the NPC's
perception
// range, no event will fire (because perception has not changed)
void main()
{
 int nUser = GetUserDefinedEventNumber();
 if (nUser == 1002) // OnPerception event
 {
 object oCreature = GetLastPerceived();
 int nWave = GetLocalInt(OBJECT_SELF, "Wave_Once");
 //check to see if I actually saw a PC
 if (GetLastPerceptionSeen() && GetIsPC(oCreature) && (nWave
== 0))
 {
 // wave only once
 SetLocalInt(OBJECT_SELF, "Wave_Once", 1);
 // set a timer so that the NPC can wave again 15 seconds
later
 DelayCommand(15.0, SetLocalInt(OBJECT_SELF, "Wave_Once",
0));
 // turn to face the PC
 ActionDoCommand(SetFacingPoint(GetPosition(oCreature)));
 // wave howdy
 ActionPlayAnimation(ANIMATION_FIREFORGET_GREETING);
 SpeakString("Hello!");
 }
 }
}

And that's it. I could also set other checks like a minimum distance, see if the PC is

facing me... or get as complex a behavior as I wish... and I don't have to worry about
screwing up the AI scripting that's already sitting in the OnPerceive event section.

USING THE SCRIPT TEMPLATES
by Yaedaien

A brief note here about an easier way to create new OnSpawn and OnUserDefined scripts
by way of using the 'Templates' button in your script editor. Thanks to Yaedaien for
writing this part up.

When you want to change a creature's default OnSpawn script, open the creature's
properties, and go to the OnSpawn script. Delete the script name you see there (it should
be called "nw_c2_default9"), and type a new name that is meaningful to you (like
"MyBalor_Spawn"). Then click the Edit button. The toolset will inform you that the
script does not exist (which is normal), click OK to create the script. You will then see
the following blank script, and you will notice that it has whatever title you typed in the
OnSpawn field:

void main()
{

}

Delete this, so that there is nothing in your script, then press the (b)Templates] button,
found in the pane on the right of the Script Editor.

This will bring up a selection of four items. Since this is an OnSpawn script, double-click
the (i)on spawn in script(/i) option and you'll see a brand new, rather long script appear in
your editor. This is now your base OnSpawn script, and you can edit it like any other
OnSpawn script, except you know that you won't accidentally overwrite anything else
that is using the original script.

Next, you would want to create your UserDefined script, so save your new OnSpawn
script, and exit the Script Editor.

Move down to the last field on the Properties tab, named OnUserDefined, and replace the
script name you find there (it should be called "nw_c2_defaultd") with something that's
meaningful to you (like "MyBalor_UserDef"). Just like with OnSpawn, click the Edit
button, and bring up the Script Editor. Again, just like OnSpawn, delete the initial, blank
script, and press the Templates button. This time, however, double click the on user
defined script selection, and then code away.

Remember to save your script, and save your module for your character's new scripts to
take effect!

MORE FULLY-COMMENTED ONSPAWN SCRIPT
Not all the lines in the regular OnSpawn script ("nw_c2_default9") explain how their
functions are actually used. This is an updated version that you may use if you wish.

NWScript:

//::///
//:: Custom On Spawn In
//:: File Name
//:: Copyright (c) 2002 Bioware Corp.
//:://
/*
*/
//:://
//:: Created By:
//:: Created On:
//:://
#include "NW_O2_CONINCLUDE"
#include "NW_I0_GENERIC"
void main()
{
// OPTIONAL BEHAVIORS (Comment In or Out to Activate)
**
 //SetSpawnInCondition(NW_FLAG_SPECIAL_CONVERSATION);
 // This causes the NPC to speak a single line from their dialogue
file
 // upon perceiving a player. Make sure that the line being spoken
is at the
 // very top of the NPC's other dialogue starting nodes and that
you have
 // placed the script "nw_d2_gen_check" in that line's 'Text
Appears When' area.
 // Do not use this flag for hostile creatures.
 //SetSpawnInCondition(NW_FLAG_SPECIAL_COMBAT_CONVERSATION);
 // This flag is similar to the above... except that it allows a
hostile NPC
 // to display a single line of dialogue before attacking. Put the
line into the
 // NPC's dialogue file as above, but place "nw_d2_gen_combat" into
'Text Appears When'
 //SetSpawnInCondition(NW_FLAG_SHOUT_ATTACK_MY_TARGET);
 // This sets up the NPC so that any NPC of a faction who is
friendly to it
 // who is attacked or attacks an enemy (and is using the generic
AI) will issue a shout
 // that this NPC will now listen and respond to.
 //SetSpawnInCondition(NW_FLAG_STEALTH);
 // If the NPC has Hide skill they will automatically be in Stealth
Mode
 // but only when the WalkWayPoints command is called (below)
 //SetSpawnInCondition(NW_FLAG_SEARCH);
 // If the NPC has the Search skill they are automatically in
Search Mode
 // but only when the WalkWayPoints command is called (below)
 //SetSpawnInCondition(NW_FLAG_SET_WARNINGS);
 // This will set the NPC to give a warning to non-enemies before
attacking
 //SetSpawnInCondition(NW_FLAG_DAY_NIGHT_POSTING);
 // This separates the NPC's waypoints into night and day. Normally
a waypoint prefix "WP"
 // or "POST" would be used always. If this flag is set, those
prefixes are used in the day
 // and "WN" or "NIGHT" prefixes are used at night.
 //SetSpawnInCondition(NW_FLAG_APPEAR_SPAWN_IN_ANIMATION);
 // when the creature spawns in, it uses EffectAppear() instead of
fading in
 // but only if SetListeningPatterns is called (below)
 //SetSpawnInCondition(NW_FLAG_IMMOBILE_AMBIENT_ANIMATIONS);

 // this causes the NPC to use common animations it possesses, and
will appear more
 // social if placed near a friendly NPC (they will turn to each
other and use social animations)
 //SetSpawnInCondition(NW_FLAG_AMBIENT_ANIMATIONS);
 //This is similar to the above, except that the creature will also
move around randomly
 //NOTE that these animations will play automatically for Encounter
Creatures.
 // NOTE: ONLY ONE OF THE FOLOOWING ESCAPE COMMANDS SHOULD EVER BE ACTIVATED AT
ANY ONE TIME.
 //SetSpawnInCondition(NW_FLAG_ESCAPE_RETURN); // OPTIONAL BEHAVIOR (Flee to
a way point and return a short time later.)
 //SetSpawnInCondition(NW_FLAG_ESCAPE_LEAVE); // OPTIONAL BEHAVIOR (Flee to
a way point and do not return.)
 //SetSpawnInCondition(NW_FLAG_TELEPORT_LEAVE); // OPTIONAL BEHAVIOR
(Teleport to safety and do not return.)
 //SetSpawnInCondition(NW_FLAG_TELEPORT_RETURN); // OPTIONAL BEHAVIOR
(Teleport to safety and return a short time later.)
 // to use 'escape', you need a waypoint the NPC will flee to with
the tag "EXIT_" + the NPC's tag
 // these commands can be activated in a script by calling
ActivateFleeToExit(), "NW_IO_GENERIC" must be included
 // for the escape commands that have 'return', the NPC will be re-
spawned at it's starting location
// CUSTOM USER DEFINED EVENTS
/*
 The following settings will allow the user to fire one of the blank user
defined events in the NW_D2_DefaultD. Like the
 On Spawn In script this script is meant to be customized by the end user to
allow for unique behaviors. The user defined
 events user 1000 - 1010
*/
 //SetSpawnInCondition(NW_FLAG_HEARTBEAT_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1001
 //SetSpawnInCondition(NW_FLAG_PERCIEVE_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1002
 //SetSpawnInCondition(NW_FLAG_ATTACK_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1005
 //SetSpawnInCondition(NW_FLAG_DAMAGED_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1006
 //SetSpawnInCondition(NW_FLAG_DISTURBED_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1008
 //SetSpawnInCondition(NW_FLAG_END_COMBAT_ROUND_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1003
 //SetSpawnInCondition(NW_FLAG_ON_DIALOGUE_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1004
 //SetSpawnInCondition(NW_FLAG_DEATH_EVENT); //OPTIONAL BEHAVIOR -
Fire User Defined Event 1007
// DEFAULT GENERIC BEHAVIOR (DO NOT TOUCH)
**

 SetListeningPatterns(); // Goes through and sets up which shouts the NPC
will listen to.
 WalkWayPoints(); // Optional Parameter: void WalkWayPoints(int nRun
= FALSE, float fPause = 1.0)
 // 1. Looks to see if any Way Points in the module
have the tag "WP_" + NPC TAG + "_0X", if so walk them
 // 2. If the tag of the Way Point is "POST_" + NPC
TAG the creature will return this way point after
 // combat.
 // To get the NPC to continue walking waypoints
after conversation, you must go
 // into its dialogue file and, under 'Other Files',
call this command again in the
 // 'End' and 'Aborted' script sections
 GenerateNPCTreasure(); //* Use this to create a small amount of treasure
on the creature
}

REWARDING GOLD AND XP

The two basic commands for doing this are very, very simple.

void GiveGoldToCreature(object oCreature, int nGP)

void GiveXPToCreature(object oCreature, int nXpAmount)

It doesn't matter where the gold or XP is coming from. just where it is going to... so these
commands can be run from anywhere.

To give 100 gold to the PC I'm speaking to (placed in a script within the 'Actions Taken'):

GiveGoldToCreature (GetPCSpeaker(), 100);

To give 100 XP to each member of the party, starting with the nearest one to me:

NWScript:

object oFirstMember =
GetNearestCreature(CREATURE_TYPE_PLAYER_CHAR, PLAYER_CHAR_IS_PC);
object oPartyMember = GetFirstFactionMember(oFirstMember, TRUE);
 while (GetIsObjectValid(oPartyMember) == TRUE)
 {
 GiveXPToCreature(oPartyMember,100);
 oPartyMember = GetNextFactionMember(oFirstMember, TRUE);
 }
}

(personally, I would put that into a function so I wouldn't have to type it all out every
time)

Some other stuff that is handy to know with regards to experience and gold:

- When you write journals in the journal editor, you can assign an 'XP Value' to each
entry. This number can be retrieved by the following command:

int GetJournalQuestExperience(string szPlotID)

In the campaign, we have a PlotID for each quest (which can consist of several journal
entries right up to 'completion') and each PlotID has an XP value. Then we dole out the
XP in percentages as the plot gets completed. 50% of the total for this, 25% for that, etc.

- How much gold does someone have?

int GetGold(object oTarget = OBJECT_SELF)

So to find out how much gold is on the person running the script you just go GetGold()...
but it literally could target anyone.

- if you want someone to take gold from someone else, you use this:

void TakeGoldFromCreature(int nAmount, object
oCreatureToTakeFrom, int bDestroy = FALSE)

If 'bDestroy' is marked as TRUE, then the creature taking the gold doesn't end up with it
in their inventory... the gold is destroyed and removed from the world.

MAKING SKILL CHECKS
First off, if you don't know how D&D 3rd edition is set up for skill checks, here's the
basic of how it goes: whenever you're trying to perform an action using your skills, you
roll the d20 (20-sided die, getting a number from 1 to 20) and add to that both the rank in
the skill and the ability bonus for whatever ability is tied to that skill. Higher is always
better, and you are trying to equal or exceed the DC... the 'difficulty class' number which
is set by the DM.

So let's say a player wants to use his Disable Traps skill on a trap he's found. The DM
determines the DC to be 25 (a fairly hard task). The player has 8 ranks in Disable Traps
and a +3 modifier to his Dexterity (the ability tied to Disable Traps). He rolls the d20 and
adds +11 to his roll, needing a 14 or higher to succeed in the task.

For such things as Disable Traps and most other skills, the skill checks are handled by the
game engine and often all that is needed from the DM is the DC (if that).
There is no automatic command in NWScript that does these checks for you, however, if
you are using a skill check in a script (whether to check for success of Persuade in
dialogue or some other use of a skill that isn't automatically covered). If you want to use
them, you're going to have to either script it or use the function in the official campaign
that we've made.

the Official Campaign's function

The thing about the AutoDC command that's defined in the official campaign that some
might not like is that the DC is automatically generated... it is not specified each time.
When the scripter uses the command, they specify either DC_EASY, DC_MEDIUM or
DC_HARD and a DC is generated based on the level of the NPC.

The syntax of it is as follows:

int AutoDC(int DC, int nSkill, object oTarget)

So if I wanted to make a persuade of an NPC that the PC is in dialogue with a hard test, I
could use this:

AutoDC(DC_HARD, SKILL_PERSUADE, GetPCSpeaker());

A note here that a skill check returns an integer (the 'int') because the command should
return either TRUE or FALSE. False (or a '0' integer) means that the check has failed.
True (or a '1' integer) means that the check has succeeded.

If you're using a skill check in the dialogue editor, you need to 'split' the conversation...
meaning that more than one dialogue stems from the same PC response. When the
dialogue is presented with choices like this, it looks to the scripts in 'Text Appears When',
starting with the top node and working its way down to the bottom. The first node that

has a script that returns TRUE (or has no script), it uses.

An example of a script with an easy Persuade check:

NWScript:

#include "NW_I0_PLOT"
int StartingConditional()
{
int iCheck = AutoDC(DC_HARD, SKILL_PERSUADE, GetPCSpeaker()) ==
TRUE;
return iCheck;
}

So you could have something like this:

"Oh, I certainly couldn't tell you that. It's confidential."
A. <Persuade> "Oh, I'm sure there's no harm in telling me."
B. <Threaten> "Tell me or suffer the consequences, wench."
C. "Let me ask you something else, then."

If I selected option B, the dialogue would proceed on two paths:
|
|
--> #1. (with persuade script in 'Text Appears When') "I suppose you're right. Ok, this is
how it is..."
|
|
--> #2. (with no script) "Forget it, I'm not telling you."

#1 above is the 'successful' path, #2 the 'failed' path. If the script in #1 returns TRUE then
that path is followed and the player was successful. No script is needed on the failed
path... if the successful path was FALSE, that meant the PC failed his skill check.

Writing Your Own Function

To write your own skill checks, you just follow the same logic that you would as if you
were about to do the check in pen-and-paper. You need the PC's bonus to the die roll, the
die roll and the DC (provided by the DM).

Some commands you might want to use:

int GetSkillRank(int nSkill, object oTarget=OBJECT_SELF)
This returns the rank + ability bonus of the oTarget's skill.

int GetLevelByClass(int nClassType, object oCreature =
OBJECT_SELF)

This returns the creature's level in a particular class (such as CLASS_TYPE_FIGHTER).

int GetHitDice(object oCreature)
This is useful if you want the character level of the PC, regardless of their class(es).

int GetAbilityModifier(int nAbility, object
oCreature=OBJECT_SELF)

Gets the modifier for a particular ability, useful if you want a strength check only, or
something similar.

At any rate, here's an example of a quick home-made skill check, say using the Heal skill
on a dialogue node:

NWScript:

int StartingConditional()
{
 int iDC = 20; // or whatever the DM wishes to set it to
 int iBonus = GetSkillRank(SKILL_HEAL, GetPCSpeaker());
 if ((d20() + iBonus) >= iDC)
 {
 return TRUE;
 }
 return FALSE;
}

Of course this is just an example... there is a built-in method for using Heal normally
(with the ActionUseSkill command, actually)... this kind of scripting would be for custom
skill checks, which I know people will want to do.

MAKING UNIQUE ITEMS

How does one script their own items that go beyond the standard item effects... how do
you make an effect conditional, for instance? How would I script a Wand of Wonder or a
talking sword?

Well, the first thing to realize is that, unlike other objects and creatures in the game, items
do not have their own scripts. You do not pull up an item's properties and specify which
scripts it uses... it can't use any.

The way that you can script things that items do has to be on the module level. In the
Module Properties, you have three 'events' which affect items. When these events occur,
it prompts the module to run whatever scripts are tied to these items.
Two of these events are OnAcquireItem and OnUnAcquireItem. This means every
time an item is picked up or dropped, an event is 'fired' which starts the appropriate
script. If no script is there, nothing happens.
So if I want to set a certain variable when a particular sword (that has the tag
"SWORD01") is picked up, say, I could put this script in the OnAcquireItem section of
the module:

NWScript:

void main ()
{
 object oItem = GetObjectByTag("SWORD01");
 int iVar = GetLocalInt(GetItemPossessor(oItem),
"VARIABLENAME");
 // below is 'if the firer of the event is the one I've
specified
 // and the variable hasn't been set, set the variable on the
 // item's possessor'
 if ((GetModuleItemAcquired() == oItem) && (iVar == 0))
 {
 SetLocalInt(GetItemPossessor(oItem), "VARIABLENAME", 1);
 }
}

That doesn't do much for scripting your own item properties, however, does it? For that,
you need to take advantage of the third module event: OnActivateItem().

Activating an item requires a specific 'activation' event. When you make an item, you can
assign to it a 'Cast Spell' property... and two of the choices will be Unique Power and
Unique Power: Self Only. The difference between these is that the second simply triggers
the 'OnActivateItem' event... the first requires you to target the Unique Power, first.

This 'Unique Power' shows up on the radial menu of the item just as any other ability
would. If you wanted to specify what that ability was to the user, you could include it in
the item's description (of which there is an 'identified' as well as an 'unidentified'
description, should you wish to use both).

When writing the script to place in OnActivateItem(), there are only a few references
which you will need to keep in mind:

object GetItemActivated()
This returns the item that caused the last OnActivateItem() event.

object GetItemActivatedTarget()
This returns the target of the Unique Power, if it was targeted at a specific object.

location GetItemActivatedTargetLocation()
This returns the target of the Unique Power, if it was targeted at a location rather than a
specific object.

object GetItemActivator()
This returns the creature object of whoever activated the item... a bit handier than going
through the whole GetItemPossessedBy rigmarole.

And that's all you need. With these, you can script as many activated properties for as
many items as you wish. Keep in mind, of course, that these scripts are module-specific.
If you take the item to another module that does not have that script (or another that looks
for that item) in their OnActivateItem(), then nothing will happen.

NOTE: there is currently a bug with OnActivateItem with regards to single-use items
(and this also applies to items on their last charge). When an item is used up, it
disappears... the event still fires, but all of the commands such as GetItemActivated and
such return an invalid object (because the item in question no longer exists).

SITTING IN CHAIRS AND SLEEPING

How do I get my PC to sit on a chair?
There is currently no emote to sit in a chair. Until one is added for PC characters to use,
the script to make a PC sit down in a chair has to be on the object, itself.

If you put down a useable placeable object chair (the chair has the Useable box checked,
and make sure the PC will have room to maneuver while sitting), put this script in the
OnUsed event in the Scripts tab:

NWScript:

void main()
{
 object oChair = OBJECT_SELF;
 if(!GetIsObjectValid(GetSittingCreature(oChair)))
 {
 AssignCommand(GetLastUsedBy(), ActionSit(oChair));
 }
}

When I place an NPC in the toolset, they just stand there. Is there no way I can have
them sitting down?

Not in the toolset, no... the creature must be standing. The creature would have to be
scripted so that when the game begins it finds a chair and performs the ActionSit
command.

Create a placeable object chair and give it the tag "CHAIR". Place the NPC next to the
chair. Copy and save their OnSpawn script under another name, and add this line at the
bottom:

ActionSit (GetNearestObjectByTag ("CHAIR", OBJECT_SELF));

Note that when a PC speaks the NPC, they will stand up. To get them to sit back down,
you will need to go to the 'Other Files' tab in their dialogue. You will see spots for two
scripts there, which activate when dialogue is either ended or aborted. Make a script that
calls the above line and they will sit back down once dialogue is over.

This is all fine and well, but what if I want the NPC to sit on the chairs already in
the tileset?

Some users have reported success by following the same process as sitting in a chair...
except find the 'invisible object' placeable object and place that on the seat of the chair.

Give that object the tag "CHAIR" and use the same ActionSit line as above and they
should sit down for you just the same.

What if I want my NPC sleeping on a bed?

There is no way currently to actually get a creature into a placeable object bed or a tileset
bed. A placeable object body can be placed onto a bed, but not a creature.

A creature can, however, sleep on a placeable object bedroll or on the floor. If you
wanted your NPC to start off the game sleeping, you need to copy the creature's
OnSpawn script, save it under a different name, and then add this to the bottom of that
script:

effect eLieDown = EffectSleep();
effect eSnore = EffectVisualEffect (VFX_IMP_SLEEP);
effect eSleep = EffectLinkEffects (eLieDown, eSnore);
ApplyEffectToObject (DURATION_TYPE_PERMANENT, eSleep,
OBJECT_SELF);

Waking Up Your NPC

If you want the NPC to wake up at some point, you must use the RemoveEffect
command. An effect, once applied, cannot simply have another variable defined as
EffectSleep, however, and removed by the command. The 'pointer' must be on that
particular effect. If the effect is the same variable in the same script as when it was
applied, you could simply use this:

RemoveEffect (OBJECT_SELF, eSleep);

Normally, however, you must scan through an object's effects and find the one you're
looking for through the effect type. The following is a simple script to remove an object's
sleep effect (this one in the OnHeartbeat of the creature should any hostile come within 5
meters):

NWScript:

// wake-up script
#include "NW_I0_GENERIC"
void main()
{
 // if I am asleep
 if (GetHasEffect(EFFECT_TYPE_SLEEP))
 {
 // get the nearest enemy creature to me
 object oTarget =
GetNearestCreature(CREATURE_TYPE_REPUTATION,
REPUTATION_TYPE_ENEMY);
 // and if there is one and it is less than 5 meters away

 if ((GetDistanceToObject(oTarget) < 5.0) &&
(GetIsObjectValid(oTarget)))
 {
 effect eSleep = GetFirstEffect(OBJECT_SELF);
 // scroll through my current effects
 while (GetIsEffectValid(eSleep))
 {
 // and if one of them if the effect sleep but
didn't come from a sleep spell
 if ((GetEffectType(eSleep) == EFFECT_TYPE_SLEEP)
&& (GetEffectSpellId(eSleep) != SPELL_SLEEP))
 {
 // remove it
 RemoveEffect(OBJECT_SELF, eSleep);
 }
 eSleep = GetNextEffect(OBJECT_SELF);
 }
 }
 }
}

HOW DO I MAKE MY NPC'S INITIATE DIALOGUE ON
THEIR OWN?
OK, first off: until you know EXACTLY what you are doing, do NOT alter the script that
is normally in the OnPerception event ("nw_c2_default2"). Leave it alone. If anyone tells
you to alter anything but the OnSpawn and OnUserDefined scripts for you NPCs and you
aren't confident of doing so, tell them they're full of monkeypoo.

As mentioned earlier, here, regarding UserDefined events, the generic AI is set up to
allow you to use these events without altering the default scripting.

Using the OnPerceive method of starting conversation

1) Go into your OnSpawn script. Save it under a new name. Then go down to the line
where it says 'SetSpawnInCondition (NW_FLAG_PERCIEVE_EVENT);' and
uncomment it (remove the '//' double slashes at the beginning of the line). Compile the
new script.

2) In your NPC's dialogue file, go to the very first line where he starts his dialogue with
the PC. If you only want him to start this with any given PC once, add the following
script into 'Actions Taken':

NWScript:

void main()
{
 SetLocalInt(GetPCSpeaker(), "Dlg_Init_" + GetTag(OBJECT_SELF),
TRUE);
}

This sets the variable that is used in the script you were using, so the dialogue isn't done
more than once.

3) Now create a new script in the OnUserDefined event for your NPC. You can put that
second script in here, as follows:

NWScript:

void main()
{
 int nEvent = GetUserDefinedEventNumber();
 if (nEvent == 1002) // OnPerceive event
 {
 object oPC = GetLastPerceived();
 if(GetIsPC(oPC) && GetLocalInt(oPC, "Dlg_Init_" +
GetTag(OBJECT_SELF)) == FALSE && !IsInConversation(OBJECT_SELF))
 {
 ClearAllActions();
 AssignCommand(oPC, ClearAllActions());
 ActionMoveToObject(oPC);

 ActionStartConversation(oPC);
 }
 }
}

POSSIBLE DRAWBACK: Now... one reason why this may not work? If your PC starts
the game visible to this NPC, there is no OnPerceive event. The event only fires if the PC
was previously non-perceived and then became perceived.

Using the Trigger Method for starting a Conversation

This is the one we use in the official campaign. It allows you to control at which point the
NPC will run up to the PC, and also determine how far the NPC will run after the PC
before giving up.

To set this up, you need to do the following:

1) Like as in #2 above, in your NPC's dialogue file, go to the very first line where he
starts his dialogue with the PC. If you only want him to start this with any given PC once,
add the script from #2 above into 'Actions Taken':

NWScript:

void main()
{
 SetLocalInt(GetPCSpeaker(), "Dlg_Init_" + GetTag(OBJECT_SELF),
TRUE);
}

2) Go into your toolset. Put down a waypoint at the spot where your NPC will return to.
Label it "WP_RETURN_" + the tag of the NPC. (so if the tag is 'Fred', label it
"WP_RETURN_Fred". Remember that all tags are case-sensitive!

3) While in the toolset, create a new generic trigger and draw a polygon around your
NPC. When the PC crosses into this area, the NPC will start running toward the PC to
talk. If the NPC leaves this area, he will stop chasing the PC and return to the waypoint.

4) Go to the trigger's 'Scripts' tab and include the following script under 'OnEnter':

NWScript:

// this is the on enter script if a trigger that
// encompasses the NPC who will be initiating dialouge.
// Make sure to replace "NPC_TALKER" with the actual tag of the
NPC
void main()

{
 object oNPC = GetObjectByTag("NPC_TALKER");
 object oPC = GetEnteringObject();
 if(GetIsPC(oPC) &&
 GetLocalInt(oPC,"Dlg_Init_" + GetTag(oNPC)) == FALSE &&
 !IsInConversation(oNPC))
 {
 AssignCommand(oPC,ClearAllActions());
 AssignCommand(oNPC,ClearAllActions());
 AssignCommand(oNPC,ActionMoveToObject(oPC));
 AssignCommand(oNPC,ActionStartConversation(oPC));
 }
}

5) Now you want to prevent the NPC from chasing after the PC. Enter the following
under the trigger's OnExit event:

NWScript:

// This will return the NPC to a starting position
// if he attempts to leave the trigger.
// You must replace "NPC_TALKER" with the tag of the NPC.
// You must also have a waypoint with the tag "WP_RETURN_" +
NPC's Tag.
// This should be placed in the spot the NPC starts at.
void main()
{
 string sTag = "NPC_TALKER";
 object oExit = GetExitingObject();
 if(GetTag(oExit) == sTag)
 {
 AssignCommand(oExit,ClearAllActions());

AssignCommand(oExit,ActionMoveToObject(GetNearestObjectByTag("WP_
RETURN_" + sTag)));
 }
}

This method doesn't care if the PC is visible or not... crossing into the trigger will cause
the NPC to initiate. If you want to make sure that the NPC sees the PC, add the following
line immediately under 'if(GetIsPC(oPC) &&' in the OnEnter script:

GetObjectSeen(oPC, oNPC) &&

As well, in a multiplayer game, the NPC will attempt to talk to each and every player at
least one with this method. If you only want him to run up to one PC EVER, then do the
following:

1) In the dialogue script, replace 'GetPCSpeaker()' with 'OBJECT_SELF'.

2) In the OnUserDefined script (in the first method) or the OnEnter script (in the second
method), replace the 'oPC' in the GetLocalInt command to 'oNPC'.

HOW DO I MAKE MY NPC ATTACK THE PC HE IS
TALKING TO?
You want to add a script that makes the NPC go hostile. Place the script in the 'Actions
Taken' tab down on the bottom right of the dialogue editor... make sure you have the
node selected where you want the battle to begin.

If you want the NPC's faction to become hostile against the target, use the generic script
"nw_d1_attonend":

NWScript:

//::///
//:: Attack on End of Conversation
//:: NW_D1_AttOnEnd
//:: Copyright (c) 2001 Bioware Corp.
//:://
/*
 This script makes an NPC attack the person
 they are currently talking with.
*/
//:://
//:: Created By: Preston Watamaniuk
//:: Created On: Nov 7, 2001
//:://
#include "NW_I0_GENERIC"
void main()
{
 AdjustReputation(GetPCSpeaker(), OBJECT_SELF, -100);
 DetermineCombatRound();
}

If, however, you just want the sole NPC to become hostile and attack, use the generic
script "nw_d1_attonend02":

NWScript:

//::///
//:: Attack on End of Conversation
//:: NW_D1_AttOnEnd02
//:: Copyright (c) 2001 Bioware Corp.
//:://
/*
 This script makes an NPC attack the person
 they are currently talking with. This will
 only make the single character hostile not
 their entire faction.
*/
//:://
//:: Created By: Preston Watamaniuk
//:: Created On: Nov 7, 2001
//:://

#include "NW_I0_GENERIC"
void main()
{
 SetIsTemporaryEnemy(GetPCSpeaker());
 DetermineCombatRound();
}

One thing to beware of: if you apply this script to the actual node where the NPC is
speaking, they will go hostile right as the dialogue of that node is put up. Likely the NPC
will not have time to read it all if it is a long piece of dialogue.

If you are OK with that, great. If not, use the Add button on the last NPC node to add a
PC response. Erase the text in the PC response and press Enter... it should become an
'End Dialogue' node. Add the script to the 'Actions Taken' area for the End Dialogue,
instead. This way, the player can read the dialogue the NPC is speaking... and when he
presses 'Enter to Continue', the NPC will attack.

COMMON PROBLEMS: Make sure that a creature you want to go into combat does not
have levels in Commoner. Commoners are set up by the generic AI to run away from
hostiles and only form into a mob when there is both a level 10+ Commoner nearby.
Also make sure that if you are using the 'Special Behaviors' in the OnSpawn script (one
of the special behavior command lines is uncommented) that you are not using the
'Herbivore' behavior. Herbivores also never engage in combat and will always run away.

HOW DO I START MY STORE?
Setting up the basic store is pretty easy... all you have to do is use the Store Wizard and
that gets your basic store object set up: you've got a store with an inventory, a mark-up
and mark-down percentage, a name and a tag. But what do you do with it, then?

Step 1: Place the store object in your module A store that is just an unplaced blueprint
cannot be accessed by your module. You've actually got to put it somewhere. You'll
notice that when you place it, it looks just like a waypoint... that's fine. Players won't see
this store 'object' or be able to interact with it in any fashion... it just needs to exist,
preferably close by to the object that is going to call on it.

Step 2: Create your accessing object Usually this is a merchant NPC... but it doesn't
have to be, really. Any object that can run a script can open a store. Having a merchant
NPC is the easiest method, however.
Simply create your merchant and go to create a dialogue for him. The simplest method is
simply have him say "Greetings! How would you like to see my wares?" Then add two
player responses: "Yes" and "No".

Step 3: Add the script to open the store object In the above dialogue, you'd want to add
this script into the 'Actions Taken' section of the "Yes" player response... so when the
player selects that response, the store is opened. Nothing needs to go in "No"... that will
simply end the conversation.

The basic script for opening a store object off of dialogue is this:

NWScript:

void main()
{
 object oStore = GetObjectByTag("STORE_TAG_HERE");
 OpenStore(oStore, GetPCSpeaker());
}

...and that's it. Naturally you want to replace "STORE_TAG_HERE" with the specific tag
of your store object.

If you look at the command structure of OpenStore, you will see that you can optionally
add on extra mark-up or mark-down percentage... that's just in case you want conditional
store usage. Take this next script, for instance... the storekeeper doubles all prices for
elves (I guess he doesn't like them):

NWScript:

void main()
{

 object oStore = GetObjectByTag("STORE_TAG_HERE");
 if (GetRacialType(GetPCSpeaker()) == RACIAL_TYPE_ELF)
 {
 OpenStore(oStore, GetPCSpeaker(), 100);
 }
 else OpenStore(oStore, GetPCSpeaker());
}

Last comment on stores: the features that the standard store object offers are pretty
limited at the moment. Perhaps that will change in the future. Regardless, know that you
cannot adjust prices on individual types of items... a merchant applies the same mark-up
or mark-down regardless of the item involved... nor can you dictate what types of items a
merchant will or will not buy. It is all or nothing.
One thing that does work on stores is that any scripting command that targets an object's
inventory works on the store object, as well. Remember: it's the store object that has the
inventory, NOT the merchant NPC. So using CreateItemOnObject,
GetFirstItemInInventory and GetNextItemInInventory will all work when targeting a
store object.

USING MODULE EVENTS
When events are triggered (whether on a module, a placeable object, or wherever), the
most important part to using the event via script is being able to identify who or what
triggered the event. Keep in mind that this is separate from the UserDefinedEvent... these
are the events that are hard-coded into each individual object. You assign a script to that
event and, when it is triggered, that script will run.

Module Event List

Event: OnAcquireItem, trigger: whenever an item is added to someone's inventory,
what triggered it? Use GetModuleItemAcquired(). Also used here:
GetModuleItemAcquiredFrom() to return the object the item was taken from,
GetItemPossessor(object oItem) to return who gained the item.

Event: OnActivateItem, trigger: whenever an item using the item property spell 'Unique
Power' (which is targeted) or 'Unique Power - Self Only' casts that spell, what triggered
it? Use GetItemActivated(). Also used here: GetItemActivatedTarget() to determine the
target of a 'Unique Power' spell if the target was an object,
GetItemActivatedTargetLocation() to determine the location target of a 'Unique Power'
spell if the target was a point, GetItemActivator() to determine who owns the item that
was activated.

Event: OnClientEnter, trigger: whenever a player logs into the module, what triggered
it? Use GetEnteringObject() to return the player object.

Event: OnClientLeave, trigger: whenever a player logs out of the module, what
triggered it? Use GetExitingObject() to return the player object.

Event: OnModuleLoad, trigger: when the module is first started, what triggered it? The
module itself... there is no specific object to 'get' in this case. In effect, this is the module
version of the OnSpawn script, run only once when the module is loaded.

Event: OnPlayerDeath, trigger: a player character death, what triggered it? Use object
GetLastPlayerDied() to return the player object who has died. Default use: the
"nw_o0_death" script is generally used here, which clears the relationship of the standard
factions to the player and determines when the 'death GUI panel' pops up that allows the
player to exit or respawn.

Event: OnPlayerDying, trigger: a player has been reduced below 0 hit points, what
triggered it? Use GetLastPlayerDying(). The difference between this and OnPlayerDeath
is that here the PC is out of HP but hasn't officially 'died' yet. Default use: The standard
script placed here is "nw_o0_dying" which applies EffectDeath to the player and kills
him officially to trigger the OnPlayerDeath event. If this script was removed, a player
would bleed to death before officially dying at -10 hit points.

Event: OnPlayerLevelUp, trigger: a player has leveled up, what triggered it? Use object

GetPCLevellingUp(). This returns a player who has leveled up... but there is no way to
prevent the player from finishing the process, as doing so is instantaneous and not an
action like resting is.

Event: OnPlayerRespawn, trigger: a player has pressed the 'respawn' option on their
Death GUI panel, what triggered it? Use GetLastRespawnButtonPresser(). Default use:
the script "nw_o0_respawn", which resurrects the player, removes all adverse effects on
him and applies the XP and gold penalty. It also determines if there is someplace (like a
waypoint) with the tag "NW_DEATH_TEMPLE" and sends them there... if not, it
resurrects him where he died.

Event: OnPlayerRest, trigger: a player has pressed the rest button, what triggered it?
Use object GetLastPCRested(). Also used here: int GetLastRestEventType() --- note that
this event fires both before and after a PC rest. You can detect which through the use of
GetLastRestEventType(), with the constants
REST_EVENTTYPE_REST_CANCELLED, REST_EVENTTYPE_REST_FINISHED,
REST_EVENTTYPE_REST_INVALID, REST_EVENTTYPE_REST_STARTED. If
you are looking to control when a player can rest, you want to detect if the rest event has
started... and if it is not the time to do so, use the AssignCommand on the PC to tell him
to ClearAllActions. This will stop him from completing his rest.

Event: OnUnAcquireItem, trigger: an item has been dropped or removed, what
triggered it? Use GetModuleItemLost() to return the item. Also used here:
GetModuleItemLostBy() to return the object that used to have that item.

Event: OnHeartbeat, trigger: every six seconds after module load, the module's
heartbeat will fire. There is nothing that triggers this event... whatever script is in this
area will run on every heartbeat. For that reason, be careful that you do not add large
scripts into this area that will be running constantly, as the overhead on processing power
that they can take up can be large.

Event: OnUserDefined, trigger: a script has used the SignalEvent command and targeted
the module (probably via GetModule). The event sent must have been set to be a
UserDefined event. (example of use: SignalEvent (GetModule(),
EventUserDefined(100))). In a script placed here, you would use
GetUserDefinedEventNumber() to watch for the number being sent... and on that
occurring, initiate the rest of your script.

USING AREA EVENTS

Keep in mind that when you create scripts for the area events (or, indeed, for the module
events) that the default 'performer' of any action-related commands is the area, itself.

If you refer to OBJECT_SELF, you are referring to the area object. If you use an action-
related command such as ActionMoveToObject without using AssignCommand to firs
send that command to a creature object, you are telling the area to move (which it, of
course, cannot). Simply keep this in mind as you code, so you can differentiate between
telling the area what to do and telling things within the area what to do.

Area Events Listing

Event: OnEnter, triggered by: something (not necessarily a player character) has entered
the area, what triggered it? Use GetEnteringObject() to return the object that has entered
the area.

An example: Let's say you wanted to set an object variable called "PC_Entered" that was
on the area whenever a player character entered the area (with the object being equal to
the PC)... and then send a UserDefined event to a particular creature in the area with the
unique tag "HUNTER" (I could then have an OnUserDefined event for that creature to
come looking for the PC). You would place the following script in the OnEnter event for
that area -

NWScript:

void main()
{
 object oEntering = GetEnteringObject();
 object oMonster = GetObjectByTag("HUNTER");
 // if the entering object is a player character
 if (GetIsPC(oEntering))
 {
 // set the object variable on the area to equal the PC
 SetLocalObject(OBJECT_SELF, "PC_Entered", oEntering);
 // send a UserDefinedEvent number 100 to the monster
 SignalEvent(oMonster, EventUserDefined(100));
 }
}

Event: OnExit, triggered by: someone has left the current area, what triggered it? Use
GetExitingObject().

An example: Let's take the same script above and set the "PC_Entered" area-set variable
to an invalid object if the PC leaves. Let's also check if the exiting object is the monster
from above (chasing the PC, no doubt)... and if it is, tell him to return to his cave (where
there is a waypoint laid down with the tag "HUNTER_CAVE") -

NWScript:

void main()
{
 object oExiting = GetExitingObject();
 object oMonster = GetObjectByTag("HUNTER");
 object oCave = GetObjectByTag("HUNTER_CAVE");
 // if the exiting object is a player character
 if (GetIsPC(oExiting))
 {
 // set the area-set variable to an invalid object
 SetLocalObject(OBJECT_SELF, "PC_Entered", OBJECT_INVALID);
 }
 // if the exiting object is the monster
 if (oExiting == oMonster)
 {
 // tell him to stop what he's currently doing
 AssignCommand(oMonster, ClearAllActions());
 // tell him to move back to his cave waypoint
 AssignCommand(oMonster, ActionMoveToObject(oCave));
 }
}

Event: OnHeartbeat, triggered by: Nothing is required to trigger the heartbeat... any
script that is placed here will be automatically triggered once every 6 seconds. As with
the module events, be careful of placing scripts in here that would run constantly.

Event: OnUserDefined, triggered by: This can only be triggered by someone using the
SendSignal command to specifically send a UserDefined event to the area object (usually
via the GetArea command or GetObjectByTag using the area's tag).

USING CREATURE EVENTS
As mentioned previously in the 'UserDefinedEvents Are Your Friend' post, unless you
know exactly what you are doing, it is not advisable to mess with the default AI scripts
that are used on creatures (except for the OnSpawn script, which is what it's there for). It
is perfectly possible to make use of every event listed below by uncommenting the
associated flag in the OnSpawn script and writing an OnUserDefined script to make use
of the associated event number (all the examples below will be OnUserDefined scripts
doing so).

Creature Event Listing

Event: OnPerception, triggered by: something has entered the creature's perception
radius. This does not automatically mean that the creature sees or hears this thing... just
that it is possible for him to perceive it. what triggered it? Use GetLastPerceived() to
return the last perceived creature (whether it was actually seen or not).
Also used here: GetLastPerceptionHeard() returns TRUE or FALSE as to whether the last
perceived object was also heard, GetLastPerceptionInaudible() returns TRUE or FALSE
as to whether the last perceived object has become inaudible, GetLastPerceptionSeen()
returns TRUE or FALSE as to whether or not the last perceived object can be seen,
GetLastPerceptionVanished() returns TRUE or FALSE as to whether or not the last
perceived object can no longer be seen. One thing to remember: all the above commands
relate ONLY to the OnPerception event. Do not use them elsewhere.
What does the default AI script do? The OnPerception generic AI gives priority to first
going into search mode if an enemy has suddenly vanished, then telling the creature to
combat an enemy that has appeared.

Example: I want my human NPC to turn towards anyone he sees, and if they are female
to bow to them.

NWScript:

void main()
{
 int nEvent = GetUserDefinedEventNumber();
 // if the OnPerception event was fired
 if (nEvent == 1004) // OnPerception event
 {
 object oTarget = GetLastPerceived();
 // and I can see the person in perception range
 if (GetLastPerceptionSeen())
 {
 // put the command to turn towards them in my queue
 ActionDoCommand(SetFacingPoint(GetPosition(oTarget)));
 }
 // and if they are female
 if (GetGender(oTarget) == GENDER_FEMALE)
 {
 // pause for half a second
 ActionWait(0.5);
 // and then bow

 ActionPlayAnimation(ANIMATION_FIREFORGET_BOW);
 }
 }
}

Event: OnSpellCastAt, triggered by: a spell has been cast at the creature... note that
spells don't intrinsically cause this event. You will see in your command list a
'EventSpellCastAt'. The spell scripts specifically use this command on their target to tell
it a spell has been cast... and the command also tells them whether or not the spell is a
hostile one. what triggered it? Use GetLastSpell() to return the constant of the spell used
(SPELL_*).
Also used here: GetLastSpellCaster() to return the object that cast the spell,
GetLastSpellHarmful() returns TRUE or FALSE as to whether or not the event was
marked hostile.
What does the default AI script do? If a harmful spell has been cast on the creature and it
is not currently in combat, it goes hostile.

Event: OnPhysicalAttacked, triggered by: the creature has been attacked in melee, what
triggered it? Use GetLastAttacker(). Also used here(i): GetLastDamager()
(i)What does the default AI script do? If the creature is attacked and not currently in
combat, it goes hostile and emits the appropriate shouts to alert allies nearby.

Event: OnDamaged, triggered by: creature has lost hit points, what triggered it? Use
GetLastDamager().
Also used here[i/]: GetTotalDamageDealt(), GetDamageDealtByType(int
nDamageType), GetCurrentHitPoints(object oObject = OBJECT_SELF),
GetMaxHitPoints(object oObject = OBJECT_SELF)
(i)What does the default AI script do? if the creature was hurt by someone he can't see,
try to find them. Otherwise locate an appropriate target and go hostile.

Example: with this particular creature, if he loses more than half his hit points he will
shout out something, run to a waypoint called "CAVE_EXIT" and disappear.

NWScript:

void main()
{
 int nEvent = GetUserDefinedEventNumber();
 if (nEvent == 1006) // OnDamaged event
 {
 int nMaxHP = GetMaxHitPoints();
 int nCurHP = GetCurrentHitPoints();
 // if at less than half hit points
 if (nCurHP < (nMaxHP / 2))
 {
 // stop what I'm doing
 ClearAllActions();
 // cry out loud
 ActionSpeakString("Ahhh! Run!!");

 // run to the exit
 ActionMoveToObject(GetObjectByTag("CAVE_EXIT"), TRUE);
 // and destroy myself
 ActionDoCommand(DestroyObject(OBJECT_SELF));
 // accept no further AI commands from this point
 SetCommandable(FALSE);
 }
 }
}

Event: OnDisturbed, trigger: something has either been added to or removed from the
creature's inventory, what triggered it? Use GetLastDisturbed() to return the creature
object who disturbed the inventory.
Also used here: GetInventoryDisturbType() will return either
INVENTORY_DISTURB_TYPE_ADDED,
INVENTORY_DISTURB_TYPE_REMOVED, or
INVENTORY_DISTURB_TYPE_STOLEN, GetInventoryDisturbItem() will return the
object that was either removed or added to inventory.
What does the default AI script do? Since a creature can't have an item added or removed
from its inventory (it's not a container), if it's inventory is disturbed it must have been
stolen... go hostile if there is a valid target.

Event: OnCombatRoundEnd, triggered by: a combat round has ended and this event is
triggered automatically. What does the default AI script do? Unless there is a special
behavior set or the set warnings flag in OnSpawn has been set, a new combat round is
initiated.

Event: OnConversation, triggered by: the creature has been clicked on for conversation
OR someone has audibly spoken, what triggered it? Use GetLastSpeaker() to return the
creature who clicked on them or spoke out loud.
Also used here: GetListenPatternNumber() to return a pattern number if one has been set
up.
What does the default AI script do? If the creature has been clicked on for conversation, it
will stop what it's doing and begin dialogue (if it can). Otherwise the script checks to see
if a spoken phrase is recognizable and if the creature has been set up to recognize combat
shouts.

Event: OnRested, triggered by: the creature has rested via ActionRest(). Creatures in the
game don't normally rest, so there is no default AI script functions here.

Event: OnDeath, triggered by: the creature has been killed, what triggered it? use
GetLastKiller() to return the object that killed the creature. Note that any scripts that are
run off this event need to be immediate... using DelayCommand will not work as the
creature cannot run commands past the point of its death.
What does the default AI script do? It checks to see if the creature was non-evil and had
Commoner levels... and if so automatically changes the killer's alignment a little towards
evil. It also emits standard shouts for help to any creatures within range who are set up to

listen for them.

Event: OnBlocked, triggered by: a door is blocking the creature's movement, what
triggered it? Use GetBlockingDoor() to return the door object. Note that only doors
currently trigger the OnBlocked event... this is not used for collision detection (yet).
What does the default AI script do? If the creature is smart enough to use a door
(Intelligence of 5+) it will first attempt to open the door and, if that's not possible, will
attempt to bash it down.

Event: OnHeartbeat, triggered by: there is no trigger needed for the heartbeat... any
script in this area will be run automatically once every six seconds. It is important that
you do not attach scripts to the heartbeat which will run constantly, as the resulting
overhead (especially if you have a lot of creatures doing so) can be high.
What does the default AI script do? It checks for some conditions that are set in the
OnSpawn and executes them if they are applicable... such as the 'fast buff' for enemies
(used when PC's draw within a certain range), day/night postings for the WalkWayPoints
function and the standard ambient animations used by creatures when standing around.

USING PLACEABLE OBJECT EVENTS

Like with areas, the thing to remember when writing scripts for placeable objects is that
when you using 'action'-type commands (commands that return void) the default
performer is the placeable object, itself. If you want the script to tell something other than
the placeable object to perform a command, you need to use the AssignCommand action.
Also keep in mind that while placeable objects are capable of performing some actions
(such as ActionPlayAnimation with reference to ANIMATION_PLACEABLE_*...
although not all placeables open/close or activate/deactivate), telling them to do things
that are inherently impossible often causes problems (ActionLockObject,
ActionUnlockObject, ActionEquipItem, ActionPickUpItem... these are examples of
things you should never tell a placeable object to do).

Placeable Object Event Listing

Event: OnClose, trigger: the placeable has been close (not that only placeables that can
be opened or closed will fire this... like a chest or armoire), what triggered it? use
GetLastClosedBy() to return the object that closed the placeable.

Example: here is an OnClose script that checks to see if its inventory is empty after it's
closed... and, if so, creates 100 gold inside.

NWScript:

void main()
{
 // get the first item in inventory
 object oInside = GetFirstItemInInventory();
 // and if there isn't one
 if (!GetIsObjectValid(oInside))
 {
 // create the gold piece item with a stack of 100
 CreateItemOnObject("NW_IT_GOLD001", OBJECT_SELF, 100);
 }
}

Event: OnDamaged, trigger: the placeable object has taken damage, what triggered it?
Use GetLastDamager() to return the object that damaged the placeable. Also used here:
GetTotalDamageDealt(), GetDamageDealtByType (int nDamageType),
GetCurrentHitPoints(), GetMaxHitPoints().

Event: OnDeath, trigger: the object has been destroyed (playing its 'destruction'
animation is automatic), what triggered it? GetLastKiller() will return the object that
destroyed the placeable.

Event: OnHeartbeat, trigger: there is no trigger for the heartbeat... any script in this
location fires automatically once every six seconds. Be careful not to put scripts in this

area that will run constantly, as the overhead can be high.

Event: OnDisturbed, trigger: an item has either been added to or removed from the
placeable's inventory, what triggered it? Use GetInventoryDisturbType(). This results in
one of these constants: INVENTORY_DISTURB_TYPE_ADDED,
INVENTORY_DISTURB_TYPE_REMOVED, or
INVENTORY_DISTURB_TYPE_STOLEN. Also used here: GetLastDisturbed() returns
the object that removed/added the item, GetInventoryDisturbItem() returns the item that
was added/removed.

example: here's an OnDisturbed script that sends a UserDefinedEvent #500 signal to a
wizard (with the tag "WIZARD1") if anyone removes a particular potion (with the tag
"PRECIOUS_POTION") from the placeable.

NWScript:

void main()
{
 object oWizard = GetObjectByTag("WIZARD1");
 object oPC = GetLastDisturbed();
 object oPotion = GetObjectByTag("PRECIOUS_POTION");
 // if the removing object is valid and the potion is removed
 if (GetIsObjectValid(oPC) &&
 (GetInventoryDisturbType() ==
INVENTORY_DISTURB_TYPE_REMOVED) &&
 (GetInventoryDisturbItem() == oPotion))
 {
 // send the signal to the wizard
 SignalEvent(oWizard, EventUserDefined(500));
 }
}

Event: OnLock, trigger: the placeable has been locked (or relocked), what triggered it?
Use GetLastLocked() to return the object that locked the placeable. Also Used Here:
GetLockLockDC() returns the DC for locking the placeable. **NOTE** I've had a few
reports that this event may not be working.

Event: OnPhysicalAttacked, trigger: the placeable has been physically attacked (but not
necessarily damaged), what triggered it? Use GetLastAttacker().

Event: OnOpen, trigger: the placeable object has been opened (for those placeable
objects that can be opened and have their 'Has Inventory' box checked), what triggered
it? Use GetLastOpenedBy().

Event: OnSpellCastAt, trigger: a spell has been cast at the placeable, what triggered it?
Use GetLastSpellCaster(). Also used here: GetLastSpell() will return the constant of the
spell used (SPELL_*), GetLastSpellHarmful() will return TRUE or FALSE depending on
whether or not the last spell cast was marked hostile.

Event: OnUnlock, trigger: the placeable has been unlocked, what triggered it? Use
GetLastUnlocked() to return the object that unlocked the placeable. **NOTE** I've had a
few reports that this event may not be working.

Event: OnUsed, trigger: if a placeable object has its 'Useable' box checked, then clicking
on the object sets off this event, what triggered it? Use GetLastUsedBy().

example: a script for a placeable object that heals whoever used it.

NWScript:

void main()
{
 object oUser = GetLastUsedBy();
 effect eHeal = EffectHeal(GetMaxHitPoints(oUser));
 effect eVis = EffectVisualEffect(VFX_IMP_PULSE_HOLY);
 // if the using object is valid
 if (GetIsObjectValid(oUser))
 {
 // apply the visual effect
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eVis, oUser);
 // and, 1 second later, heal the user
 DelayCommand(1.0, ApplyEffectToObject(DURATION_TYPE_INSTANT,
eHeal, oUser));
 }
}

Event: OnUserDefined, trigger: this event will only occur if someone specifically uses
SignalEvent to send a UserDefinedEvent to the placeable object.

USING TRIGGER EVENTS
Again, make sure that any actions you wish to be caused by the trigger are sent to the
appropriate targets via AssignCommand... or else you are telling the trigger, itself, to do
something, and there is very little that a trigger can do on its own.

Trigger Event Listing

Event: OnClick, trigger: if you want a trigger that will cause an effect when it is clicked
upon by the player, a script must be entered in this area. Most types of area transitions
use this event (although a trigger that is set up as the 'Area Transition' type can make use
of the wizard to do so). who triggered it? Use GetClickingObject() to return the player
object who clicked on the trigger.

Event: OnEnter, trigger: any object that crosses the 'border' of the trigger will set off this
event. who triggered it? Use GetEnteringObject().

Example: the following OnEnter trigger script will jump every member of the party who
is in the same area to the waypoint tagged "JUMP_HERE".

NWScript:

void main()
{
 object oWP = GetObjectByTag("JUMP_HERE");
 object oParty = GetFirstFactionMember(GetEnteringObject(),
TRUE);
 // cycle through valid player character party members
 while (GetIsObjectValid(oParty))
 {
 // and if they are in the same area
 if (GetArea(oParty) == GetArea(GetEnteringObject()))
 {
 // jump the party member to the waypoint
 AssignCommand(oParty, JumpToObject(oWP));
 }
 // get the next party member
 oParty = GetNextFactionMember(GetEnteringObject(), TRUE);
 }
 oParty = GetFirstFactionMember(GetEnteringObject(), FALSE);
 // now cycle through all non-player party members (like
familiars)
 while (GetIsObjectValid(oParty))
 {
 // and if they are in the same area
 if (GetArea(oParty) == GetArea(GetEnteringObject()))
 {
 // jump the party member to the waypoint
 AssignCommand(oParty, JumpToObject(oWP));
 }
 // get the next party member
 oParty = GetNextFactionMember(GetEnteringObject(), FALSE);
 }

 // now jump the entering player to the waypoint
 // this line may not be necessary... including it
 // just to make certain the original PC jumps
 AssignCommand(GetEnteringObject(), JumpToObject(oWP));
}

Event: OnExit, trigger: whenever an object crosses the boundary of the trigger to leave
the trigger, who triggered it? Use GetExitingObject() to return the exiting creature.

Example: this OnExit trigger script sends a command to any exiting giant to return to a
waypoint.

NWScript:

void main()
{
 object oWP = GetObjectByTag("RETURN_HERE");
 object oCreature = GetExitingObject();
 // if the exiting creature is a giant
 if (GetRacialType(oCreature) == RACIAL_TYPE_GIANT)
 {
 // tell it to stop what it's doing
 AssignCommand(oCreature, ClearAllActions());
 // and move to the waypoint
 AssignCommand(oCreature, ActionMoveToObject(oWP));
 }
}

Event: OnHeartbeat, trigger: like other heartbeats, the heartbeat of a trigger activates
every 6 seconds. A trigger, however, is not quite the same as another object... it is only
'active' when something is within its bounds or it has been clicked upon. You cannot
place a trigger and give it a heartbeat script to constantly issue orders... if you want
something to do that, use an invisible placeable object, instead.

Event: OnUserDefined, trigger: again, this event will only fire if a UserDefinedEvent
has been specifically sent to the trigger via the command SignalEvent.

[Edited By David Gaider: Monday, 08 July 07:18PM (GMT)]

QUEST CREATION WALKTHROUGH - NO SCRIPTING
REQUIRED
by Iskander

There have been a bunch of request along the lines of:

Quote:
Help! I want to make a quest, but I don't know how. I want to have:
1) NPC says they need you to get something for them
2) PC gets item and brings it back
3) NPC rewards PC with gold or experience, alters dialogue to reflect new state

Here's one way to do this, using only the script wizards and the conversation editor. You
don't need to edit a single line of script for this.

You're going to use a local variable on the PC to determine the state of the quest (for
him/her); we'll call it "iPlottQuest". It doesn't matter what it's called (as long as it doesn't
conflict with an NWN default value). iPlottsQuest is going to have 3 possible values:

Quote:
0 - The PC hasn't been given the quest (default).
1 - The PC has been given the quest, but hasn't completed it.
2 - The PC has finished the quest, and can't do it again.

• Paint your NPC, let's call him Plott deVice
• Paint your Item elsewhere, and edit its properties. Give it a unique tag, which

we'll be using later. Let's call it 'itemPlottsDoohickey'.
• Create a new conversation for Plott deVice
• Add the following lines of dialogue to the conversation root in this order:

Quote:
-- Thank you again, you're wonderful.[END DIALOGUE]
-- Have you found the Doohickey of Destruction?[END DIALOGUE]
-- Excuse me, could you help me out?[END DIALOGUE]

• Note that the lines of dialogue are backwards because when faced with multiple
choices for an NPC at the same conversation level, the engine will choose the first
line of dialogue that either has no 'Text Appears When...' script, or whose 'Text
Appears When...' script evaluates to TRUE. Also, you don't need to put the 'END
DIALOGUE' bits in, the editor will do that automatically.

Now we just need to set the conditions under which each line of dialogue appears.
The last one is easy - it's a default. If neither of the first two lines appears, the last
one always will, so we're not going to change that.

• Select the 'Thank you' line, and look at its 'Text Appears When...' tab. Click on the
wizard's hat button to start the Script Wizard. Since we're checking to see if the
quest is done, we're going to look for the local variable we chose, so check 'Local
Variable' and click Next.

• In the 'What local variables have to be set?' screen, we need to fill in some
blanks. When we're done, the five boxes at the top should read like a (strange)
sentence that answers the question. In this case, fill in the blanks so it reads "int
iPlottQuest is equal to constant int 2", then click 'Add'.

• The wizard will add a line to the 'Local Expressions' box that should read
GetLocalInt(GetPCSpeaker(), "iPlottQuest") == 1. Click 'Next'.

• Give your script a name. At this point, it's not particularly important what the
name is, especially if you're only using the wizards. Click Finish.

• Now the first line of dialogue will only show up when the PC has completed the
quest.

• Repeat the process with the 'Have you found...' line, but set the value to 1 instead
of 2. This line will only appear when the PC has been given the quest, but hasn't
got the Doohickey yet.

• Now you need to flesh out the conversation to give the PC paths of response. PC's
got to be able to accept the quest, and say 'Yes' when he's got the item. Add lines
of dialogue to the conversation so it looks like this:

NWScript:

--- Thank you again, you're wonderful.[END DIALOGUE]
+-+ Have you found the Doohickey of Destruction?
| |
| |-+ Yes.
| | |- Thank you, thank you, thank you. Would you accept this
small token of my esteem?[END DIALOGUE]
| | |- No you haven't! Please keep looking, I just know it's out
there.[END DIALOGUE]
| |
| |-- Not yet, still looking.[END DIALOGUE]
|
+-+ Excuse me, could you help me out?
 |
 |-+ Sure, what's the problem?
 | |
 | |-+ I've lost my Doohickey of Destruction, can you find it
for me?
 | |
 | |- Yep. Be right back.[END DIALOGUE]
 | |- Sorry, too busy... gotta go![END DIALOGUE]
 |
 |-- Sorry, too busy... gotta go![END DIALOGUE]

• Now, let's start the PC's quest. Highlight the 'Yep. Be right back' line, and go to its
'Actions Taken' tab. This is where you specify what should happen when a PC
(or NPC) says a particular line. Once again, click on the hat to start the Script
Wizard.

• Since we're modifying the flag on the PC to let us know that the quest has started,
check the 'Set Local Variables' box, and click 'Next'.

• Fill in the blanks so the boxes read "int iPlottQuest constant int 1", and click
'Add', 'Next' and save the script. Now, when the PC chooses 'Yep. Be right back'
in conversation, the engine will set that PC's 'iPlottQuest' variable to 1.

• Finally, we need to complete the quest, and reward the PC. First, we add a
conditional on the 'Thank you, thank you' line to check whether the PC has really
got the item. Go to the 'Text Appears When...' tab, and start the wizard, but this
time check the 'Item in Inventory' box, and click 'Next'.

• Fortunately, you jotted down the tag of your special item, and here's where you
use it: type 'itemPlottsDoohickey' in the 'Enter a new tag' box, and click 'Add'.
Save the script. Note that you don't need to add a conditional for the "No you
haven't!" line, because it's the default.

• Finally, we get to the rewards. Still on the 'Thank you, thank you' line, switch to
the 'Actions Taken' tab, and start the Wizard. We've got quite a lot to do here, so
check the 'Give Rewards', 'Take from Player', and 'Set Local Variable' boxes,
before clicking 'Next'.

• In the 'Give what rewards?' screen... give rewards, and decide whether the party
or just the PC gets the benefits. Click 'Next'.

• In the 'Take what?' screen, type 'iPlottsDoohickey' into the 'Take item (by Tag)'
box, and leave 'Destroy' selected. Click 'Next'.

• Finally, we need to set our flag variable for the last time. Set 'iPlottsQuest' to 2,
click 'Add', 'Next', save the script, and we're done.

• Load the module into single-player, and go chat to your NPC.

This is an elementary Fetch! quest, without a single line of script-writing necessary. You
do need to understand a little bit about variables, and tags, and you need to be aware that
the Conversation Editor and the Script Wizard is writing a bunch of little scripts behind
the scenes (you'll see they've been added to your module already). But you don't need to
write the scripts yourself. Which is cool.

Here are some variations, all achievable with the wizards, that you might like to try:

• You've given the PC money and experience... how about improving his reputation
with the NPC's faction?

• Give the PC the chance to insult the NPC, and have that change the PC's
reputation with the NPC's faction for the worse.

• Add a '<StartHighlight>[Keep the Doohickey]</Start>Nope... couldn't find it,
honest!' line of dialogue to the 'Have you found...' tree. Make it appear only when
the PC has the Doohickey.. and add some consequences to the theft.

• Make the NPC xenophobic: only start the quest if the PC is the same race.
• Add a Persuade option for PCs to try and get the quest from the xenophobic NPC.
• Make it so that the Persuade check doesn't appear for PCs with low Charisma.
• Add another NPC to the quest, one that knows where the Doohickey is. (You'll

need to add some more states to iPlottQuest and have that NPC modify the same
Local PC variable in its conversation).

Finally, some tips:
(list)
(*) To get conversations to loop back to an earlier point, you can use linking. Copy the
node you want to link to, and then right-click the node you want to link from... you'll see
a 'Paste as link' option. (Note that you can't paste links from a speaker onto its own
dialogue)
(*) To break long NPC descriptions up, add a single child conversation node, delete the
default text, and leave it blank. Then continue the NPC's waffle in a child of the blank
node. You'll see the node change to '[CONTINUE]' in the editor... the PC gets the
familiar 'Continue.' option in the conversation.
(/list)

I hope this is of use to someone... if you do use it, and find anything unclear, excessively
patronizing, or otherwise objectionable, please let me know, and I'll try to fix it.

Cheers,
Iskander

[Edited By David Gaider: Tuesday, 09 July 03:12AM (GMT)]

Celowin's Scripting Tutorial Lesson III - Conditionals

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don't know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

Let's Begin
This lesson is going to cover what is probably the most important part of scripting... how
to make your code do something only some of the time – that is, only when some
condition is met. At a guess, on looking through the forum, 90% or so of the questions
come down in one way or another to dealing with this.

I've already previewed this idea at the end of Lesson 2, but I didn't give any explanation.
The script I really want to showcase in this lesson is fairly complicated, so I'm going to
go ahead and talk a bit of theory first.

The basic format for a conditional, or "if statement" is like this:

NWScript:

if (condition)
{
 do_this;
 do_something_else;
 do_another_thing;
}

(The above is not a true script, just something to give the general idea.)

Basically, if the "condition" is met, the script will do the things between the { and the }.
If the condition isn't true, it does nothing.

mailto:james.foxglove@verizon.net

(Note on the format: It is a common beginner's error to put a semicolon after the line
starting with "if". There isn't supposed to be one there.)

That is really all there is to it... the tricky part is figuring out exactly what a "condition"
is. There are many, many types of conditions we can put in here, with lots of little rules
affecting how they work. I am certain that this lesson will not be able to cover every
single rule that can be put here. I doubt that I myself know all of the functions that we
could call. I can only hope to get you to the point where you know enough to understand
the basics, so that you can look at other people's scripts and learn from them.

Most conditions come down to a comparison. For example, in the script I put at the end
of Lesson 2, the relevant line was

if (nCount == 1)

Notice the "==" is in fact two equals signs. As we discussed in lesson 2, a single equals
sign is used to "set" a variable. The double equals sign is more asking the question "are
the two sides the same?"

Just looking at the statement, the sides look very different. One side has a bunch of text,
the other side is a number. How can there be any question that they are the same?

Well, remember that nCount is a variable and is actually equal to a number. So, it all
depends on the value stored in nCount. If nCount is storing the number 1, then the
condition will be true, and the associated actions are performed. If nCount is storing the
number 7, then the condition will be false, and this statement will not do anything.

The other major way to test a condition is through a predefined function. We'll explore
that in this next example.

Example Script
Let's build a script with a simple conditional. There are going to be a number of new
functions introduced in it, I'll explain them afterward.

We're going to need to do some setup for this script to work.

- Open up the Test Module we've been working with in the editor.
- Create a new area, forest tileset, dimensions 4 by 2. Call it Test Area 002.
- At one end, paint the module start location.
- At the other end, paint an npc. Just make it a commoner, for simplicity.
- Change the tag of the npc to GUARD
- Go to the scripts tab of the npc, delete all the scripts. (Next lesson, I hope, we can get
rid of this step. It irks me to have to use npcs that don't react.)
- Go to the "OnPerceived" handle, and input the following script.

NWScript:

object oSeen = GetLastPerceived();
void main()
{
 if (GetIsPC(oSeen))
 {
 ActionSpeakString("Greetings, friend.");
 }
}

- Save it, using our standard naming convention, tm_guard_op (op for On Perceived)
- Ok everything on the npc, save the module, and go test it.

Run toward the guard.... when you get near, it will speak its phrase. Run far enough away
and come back, it will speak it again. If you stay close to the npc, though, it won't do
anything.

Let me switch into question and answer mode to try and explain this one. I'm using the
same naming conventions used before, so I won't go into those. It is just the script that I'll
focus on.

Another new handle, eh? What does this OnPercieved thing do?

This one calls the attached script whenever the npc notices something in game. If
something is invisible or hiding, and the npc doesn't notice it, the script won't be called.

We want the npc to react when she sees a character, hence the use of this handle.

What is this object stuff in the first line? I didn't understand it the last time you threw
something before main, and now you're pulling it again!

Well, really, we're using it the same way we did before, it is just a new "data type."
Before, we set up a variable to store an integer. Now, we are setting up a variable to store
an "object."

I've said it before, and I'll probably repeat it again later. Nearly everything in the game is
an object. NPCs, players, items, waypoints, placeables... these are all objects. Many,
many functions in the game are written just to deal with figuring out what object is what,
and many more are written to manipulate objects.

So, we are setting up a temporary variable, which we are calling oSeen (the starting o to
remind us it is an object), and storing a value into it.

What about the GetLastPerceived() part of the line?

This is a BioWare written function. Any of their functions that start with Get will return
some sort of data. The names are usually rather descriptive... this function gives as an
output the last object that was seen by the npc.

(As a note... I have a tough time thinking of any time you would use this function outside
of the OnPerceived script handle. It gets used in just about every OnPerceived script, but
basically never outside of it.)

So, putting this together with the last question, this first line of our script is just making it
so that we can refer to the object that the npc saw in the first place.

You spent all that time up above talking about comparisons, and now you've only got one
thing inside your if condition! What gives?

Well, this is a peculiarity of the GetIsPC function. It takes an object as an input, and
returns TRUE if it is a PC, or FALSE if it isn't.

But this is exactly what we need for a condition! If it is a PC, the attached lines run. If it
isn't a PC, then they won't.

If you prefer, you can change the line to

if (GetIsPC(oSeen)==TRUE)

to make it look more like a comparison... but as we've seen, it isn't really necessary.

Do we even need the if check at all? Won't it always be a PC that the npc notices?

For our little test module, yes. There is really nothing else in the module for the guard to
perceive.

Everything I write in these lessons, though, I try to write in the same manner that I would
for a real module. What if there was a hostile goblin nearby? You wouldn't want the
guard to call it a friend.

For that matter, even friendly npcs...why bother talking to them if there is no PC around
to see the interaction?

Aha! Now I've caught you! It won't be that all PCs are friendly either!

Good point. Let's play around with our module a bit.

The Changing of the Guard
(Sorry, couldn't resist the pun....)

What we're going to do is modify our module so that the guard will attack any pc it sees

that doesn't have a special ring. Only if the pc carries the ring will the guard call out the
friendly greeting.

- Open the toolset, load up the module, and go to Test Area 002
- First, create the ring. Go to "Paint Items", "Miscellaneous", "Jewelry", "Rings",
"Copper Ring." Place it near the module start.
- Edit the properties of the copper ring, change the tag to PASSRING
- If you're feeling ambitious, you can edit the name of the ring, give it a description,
whatever. For the purposes of the script, only the tag matters.
- Now, go to the guard and open up the OnPerceived script we had before. Change it so
that it is like this:

NWScript:

// Friend or Foe Script: tm_guard_op
// This should be placed in the OnPerceived handle of a guard.
//
// The guard will check to see if a PC has a passring, and if
not, attack.
object oSeen = GetLastPerceived();
object oRing = GetItemPossessedBy(oSeen, "PASSRING");
void main()
{
 // If it isn't a PC that the guard sees, it won't do anything.
 if (GetIsPC(oSeen))
 {
 if (oRing == OBJECT_INVALID)
 {
 // If the PC doesn't have the ring, attack the PC.
 ActionSpeakString("Die, trespasser!");
 ActionAttack(oSeen);
 }
 else
 {
 // Otherwise the PC does have the ring. Be friendly.
 ActionPlayAnimation(ANIMATION_FIREFORGET_GREETING);
 ActionSpeakString("Greetings, friend.");
 }
 }
}

I'm starting to embellish my scripts a bit, throwing in more and more new commands.
While it may be a bit confusing at first, you'll really notice that if you start understanding
the basic structure, all these random commands start to fall into place.

Anyway, save it all, load it up as a module, and see what happens. First, get the ring on
the ground, and approach the guard. It should be friendly. Next, run away, drop the ring
on the ground, and approach again. It will attack you this time.

Breaking it Down

Argh! You've added another new initialization! I hate that!

All I can say is to trust me, the scripts look a lot worse without them. So, let's take a look
at this new initialization line.

object oRing = GetItemPossessedBy(oSeen, "PASSRING");

Once again, we're setting up a temporary variable, which will hold an object. The
GetItemPossessedBy function takes in two inputs... the first is the creature object that you
want to check for the item, the second is the tag of the item you're checking for.

We've already defined oSeen as the person triggering the script, the one getting noticed
by the npc. So, oRing is the ring carried by that person that has the tag PASSRING.

But what if the person doesn't have the ring? What happens then?

Well, the GetItemPossessedBy still runs. But since it can't find the object on the person, it
comes back with OBJECT_INVALID. Basically, a fancy way of saying "No such thing."

What are all these lines starting with //? They look like English instead of script?

Anything in a line after a // is ignored by the script. These are called "comments." Any
good scripter will put in comments to explain what is going on.

It is really for your own good. You may perfectly understand a script when you write it...
but that doesn't mean you'll remember every detail a month from then when you have to
modify it.

Also, it is polite to do it for the sake of anyone else that will look at your script. The more
explanation you give on what you are trying to do, the easier someone else will
understand what you have written.

Your main script is looking really confusing. You have four sets of { and }! How am I
supposed to keep track of all of them?

It can be tough, I freely admit it. The more complicated the script, the more confusing
these "nested" statements can be. One trick that helps a lot is to use indentation, like I
have been.

Some people like putting in blank lines to further break the script into "blocks." Again,
I've done it a bit up there. I don't think it helps much in this script, but it takes no effort,
so I may as well.

Comments can help break up a script into blocks as well.

Even with all these things, it can still be confusing. I'm not sure what more I can say,
other than "you'll get better at reading them with practice."

What is this "else"?

"else" is an addition to the if-statement. The format becomes something like:

if (condition)
{
do_this;
and_this;
}
else
{
do_this_instead;
and_also_this;
}

Basically, if the "if" part of it doesn't "go off", it does the "else" instead.

Let's analyze our whole inside if-statement. It checks... is the temporary variable oRing
equal to OBJECT_INVALID? (That is, did the PC not have the ring?) If so, attack.

On the other hand, if that wasn't true, then the PC did have the ring. So, we do the "else"
part, and be friendly.

For many people tracing through the logic of things like this is the hardest part of
scripting. If you are a visual person, making a flowchart helps a lot. I would put one here,
but I'm not going to try to draw one using ascii.

What are the new actions you put in here?

I think the names are rather descriptive. ActionAttack attacks the thing you pass to it as
an input. ActionPlayAnimation has the npc perform an animation – in this case, the one
called ANIMATION_FIREFORGET_GREETING. Basically, it is just the way to tell the
npc to wave.

One More Modification
This lesson is getting huge, but there is one more thing that I want to throw in. (Ok, I
lied... there are 5,217 more things that I want to throw in, but I'm trying to make this
digestible.)

What if we want the opposite behavior from our guard? We want to attack if the PC has
the ring, and be friendly if not? For example, maybe the ring was stolen?

We could do move a bunch of blocks of text around... and if we did it right, it would

work. But we can actually achieve this result by changing 1 character in our script.
Where it says

if (oRing == OBJECT_INVALID)

change it to

if (oRing != OBJECT_INVALID)

"!=" is another kind of comparison. It checks to see if the two sides are not equal to each
other. So now, if the PC does have the ring, the guard will attack.

Conclusion
There are a lot of new ideas in here, but once you have them mastered you really have
unlocked the true power of NWScript. In particular, combining conditionals with local
variables opens up all sorts of possibilities.

As always, feel free to ask questions about anything you don't understand. I do my best to
explain things in a way that makes sense to everyone, but these are complicated ideas if
you haven't dealt with them before. Sometimes, something that seems obvious to me can
be confusing to someone else.

Lesson Four should be easier to write... I'll probably have it out soon. For those curious,
I'm going to discuss User Defined Events, and how to make an npc without throwing
away all of BioWare's hard work in writing the default scripts.

[Edited By David Gaider: Tuesday, 09 July 03:12AM (GMT)]

ADDING & REMOVING EFFECTS
If you scroll down the list of commands in your script editor, you will see a long list of
commands that begin with the word 'Effect'. These are the basis for building all spells,
special abilities and visual effects in the game. There are two commands that allow you to
use them: ApplyEffectToObject and ApplyEffectAtLocation. Both of them are very
similar in their structure, except the former targets a specific object (creature, item,
placeable object, etc) and the other targets a specific location (a point in space).

void ApplyEffectToObject (int nDurationType, effect eEffect, object oTarget, float
fDuration=0.0f)

Duration Type: the 'nDurationType' is asking for a constant that begins with
DURATION_TYPE_*, of which there are only three. DURATION_TYPE_INSTANT
would apply to any effect that is both immediate and permanent and cannot be removed.
EffectDamage would be one example, as well as any of the 'fire-and-forget' visual effects.
If not instant, the constant must be either DURATION_TYPE_PERMANENT or
DURATION_TYPE_TEMPORARY. Permanent is as it sounds... the effect lasts until
removed or dispelled. A temporary duration means that the effect must have a duration
specified in the command (and is the only time this is so).

Effect: This is the specific effect that you are going to use. It is common to define an
effect variable first which contains all the pertinent information of the effect command,
and then use that variable when applying... but it is not required.
Each effect will vary in its requirements. Some have only a set application and are simply
called, such as EffectSleep or EffectCharmed. Some require additional parameters, such
as EffectDamage or EffectPolymorph. I won't go through every effect here, but it is
important that you provide all the parameters required by an effect or it will be invalid.

Target: this will either be the object (in ApplyEffectToObject) or the location (in
ApplyEffectAtLocation). It can be declared seperately in a variable or defined in the
command.

Duration: a duration (in seconds) is only required for effects of
DURATION_TYPE_TEMPORARY. When specified, it must be as a float... meaning the
number must have a decimal place. So put '3.0' for 3 seconds, or '10.5' for 10 and a half
seconds.

Some Examples of Effects

- on the use of an object, polymorph the user into a pixie

NWScript:

void main()
{

 effect ePixie = EffectPolymorph(POLYMORPH_TYPE_PIXIE);
 ApplyEffectToObject(DURATION_TYPE_PERMANENT, ePixie,
GetLastUsedBy());
}

- an item with the Unique Spell property (with the tag "WONDERFUL_WAND" that
heals and hastes the target for 30 seconds:

NWScript:

void main()
{
 object oWand = GetItemActivated();
 if (oWand == GetObjectByTag("WONDERFUL_WAND"))
 {
 object oTarget = GetItemActivatedTarget();
 int nMaxHP = GetMaxHitPoints(oTarget);
 int nCurHP = GetCurrentHitPoints(oTarget);
 effect eHeal = EffectHeal(nMaxHP - nCurHP);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal,
oTarget);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY,
EffectHaste(), oTarget, 30.0);
 }
}

- in a creature's OnUserDefined, when an event #100 is sent, a generic bugbear is
summoned without effects at a waypoint tagged "SUMMON_POINT":

NWScript:

void main()
{
 int nUser = GetUserDefinedEventNumber();
 if(nUser == 100)
 {
 effect eSummon = EffectSummonCreature("bugbeara001");
 location lWP =
GetLocation(GetObjectByTag("SUMMON_POINT"));
 ApplyEffectAtLocation(DURATION_TYPE_PERMANENT, eSummon,
lWP);
 }

}

Visual Effects
Visual effects are very similar to regular effects in that you apply them in the same way.

You use EffectVisualEffect and provide it the parameter of one of the visual effect
constants... all of which start with VFX_*. There are a fair number of these, however, and
they deserve some special mention.

VFX_BEAM_* = these are the different types of beam visuals, and while grouped with
the other visual effects, these constants are used with EffectBeam and not with
EffectVisualEffect.
VFX_COM_* = these are combat visual effects, almost all of which should be applied
with an instant duration.
VFX_DUR_* = most of these are the visual effects used for spells. They all must be
applied with either a permanent or temporary duration.
VFX_FNF_* = these are called 'fire-and-forget' effects in that they play only once. They
must have an instant duration.
VFX_IMP_* = these are 'impact' effects, usually used for the short-duration effect when
a spell strikes a target. They have an instant duration.

This is an example of a magic well which, when used, creates an effect on itself and then
applies a strength increase with an effect to the target (but can only be used once by
them... if they use it again it strikes them with lightning for 8d6 damage):

NWScript:

void main()
{
 effect eFirst;
 effect eSecond;
 effect eStrength = EffectAbilityIncrease(ABILITY_STRENGTH,
(d4() + 1));
 object oTarget = GetLastUsedBy();
 int nOnce = GetLocalInt(oTarget, "Use_Pool_Once");
 // if the PC has not used the pool before
 if (nOnce == FALSE)
 {
 eFirst = EffectVisualEffect(VFX_IMP_GOOD_HELP);
 eSecond =
EffectVisualEffect(VFX_IMP_IMPROVE_ABILITY_SCORE);
 // create the effect on the pool
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eFirst,
OBJECT_SELF);
 // apply the strength effect with visual 3 seconds later
 DelayCommand(3.0,
ApplyEffectToObject(DURATION_TYPE_INSTANT, eSecond, oTarget));
 DelayCommand(3.0,
ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eStrength, oTarget,
300.0));
 // and set the variable on the PC so they can't use the
pool again
 SetLocalInt(oTarget, "Use_Pool_Once", TRUE);
 }
 // if they have used the pool
 else

 {
 eFirst = EffectVisualEffect(VFX_IMP_LIGHTNING_M);
 // allow them a reflex save against the lightning bolt
 int nDamage = GetReflexAdjustedDamage(d6(8), oTarget, 25,
SAVING_THROW_TYPE_ELECTRICITY);
 eSecond = EffectDamage(nDamage, DAMAGE_TYPE_ELECTRICAL);
 // and then cause the visual effect of the bolt strike
and apply the damage
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eFirst,
oTarget);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eSecond,
oTarget);
 }
}

Removing Effects

The thing to know about removing effects is that an effect has a
unique 'pointer' established when it is applied. If you define a
new effect variable later and define it as a similar type of
effect, RemoveEffect will not target it.

The easiest way to remove an effect is to scroll through the
current effects that are applied to a target through the use of
GetFirstEffect and GetNextEffect... and then filter out the
specific effect you are looking for. Once you have found it (or
them if you are removing more than one effect at a time) the
pointer is set to the correct effect and you can remove it.

The following commands are useful for filtering:

GetEffectCreator = if you want to specify only effects that were
applied by specific creatures or objects
GetEffectDurationType = this will return the constant of an
effect's duration type (either instant, permanent or temporary).
Very general, but useful in specific circumstances.
GetEffectSpellId = this will return the constant of the spell
that applied the effect (SPELL_*). Very useful if you are looking
for all the effects of a particular spell or leaving out effects
of certain spells.
GetEffectSubType = this will return the constants
SUBTYPE_MAGICAL, SUBTYPE_SUPERNATURAL or SUBTPE_EXTRAORDINARY.
All effects default to a magical sub-type unless specifically set
otherwise.
GetEffectType = this is the most commonly-used filter when
looking for a specific effect. It returns the constant
EFFECT_TYPE_*, which almost duplicates the list of effect
commands. Only visual effects don't have an effect type.

the basic script for removing an effect looks like this:

effect eEffect = GetFirstEffect(oTarget);
while (GetIsValidEffect(eEffect))
{
if (eEffect == filter used)
{
RemoveEffect(oTarget, eEffect);
}
eEffect = GetNextEffect(oTarget);
}

an example of removing a curse effect applied by a witch (with
the tag "EVIL_WITCH") off of dialogue:

NWScript:
void main()
{
 effect eEffect = GetFirstEffect(GetPCSpeaker());
 while (GetIsEffectValid(eEffect))
 {
 if ((GetEffectType(eEffect) == EFFECT_TYPE_CURSE) &&
 (GetEffectCreator(eEffect) ==
GetObjectByTag("EVIL_WITCH")))
 {
 RemoveEffect(GetPCSpeaker(), eEffect);
 }
 eEffect = GetNextEffect(GetPCSpeaker());
 }
}

Some Things To Be Aware Of

- EffectKnockdown causes a crash when applied by anything other than a creature (will
be fixed in next patch)

- EffectHitPointChangeWhenDying doesn't work (will be fixed in next patch)

- All effects are not permanent... they do not save with the character back to the vault, but
will persist within the current module. The longest effect type currently is the
extraordinary effect, which will resist dispel magic effects and resting.
ExtraordinaryEffect and SupernaturalEffect are applied when declaring the effect
command:

effect eEffect = ExtraordinaryEffect (EffectSilence());

- if there are any other hints or notices that you think should be included here, please let
me know.

Celowin's Scripting Tutorial Lesson IV - UserDefined
Events
Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don't know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

Clean Up on Lesson Three
The more astute people following this sequence of lessons noticed that the guard script
we came up with in Lesson Three was "good enough", but didn't behave exactly as we
wanted it to. Every time the guard was "friendly", it would call out the greeting twice.
Only people paying close attention would notice, but it is something that we should
probably fix before going on. Besides, it gives me a chance to explain another concept.

First, we need to pinpoint why the guard was behaving that way... and it boils down to
the OnPerception script handle. There are four things that can cause the attached script to
fire:

• the npc sees something
• the npc hears something
• the npc notices something disappear from sight
• the npc notices something stop making sounds

So, what was happening is that the npc was both seeing and hearing the pc, and so the
script was being executed twice. Not the end of the world, but not the behavior we
wanted, either.

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

Let's fix this in the following way: We'll have the guard only react if it sees something.
After all, the guard is looking for a ring, and those are usually pretty tough to hear.

We could do this by nesting another level of if statements, but it was already getting a bit
confusing with all the different layers we had. Instead, what we want is for the script to
check two things at once: we want to be sure the object perceived was a pc and that it
was perceived by sight. Only if both things are true will we do all the rest.

We can do this just by modifying the condition, along with the operator "&&". &&, (read
as simply "and") when put into a condition, is a way of linking two conditions together.
The entire thing will be true only if both parts are true. To fix our script, then, all we have
to do is change the line:

if (GetIsPC(oSeen))

to

if (GetIsPC(oSeen) && GetLastPerceptionSeen())

Then, the script will only run if it was a pc noticed by the guard, and also the guard saw
the pc, instead of noticing the pc some other way.

The GetLastPerceptionSeen is a little function that returns TRUE if the last perception
was by sight, FALSE if any of the other three.

I won't do an example right now, but another way of linking conditions together, instead
of && is ||. || is read "or" and means that the condition is true if either one of the parts is
true. This might be used if there were multiple reasons why the guard might attack.
(Perhaps guard would attack if the pc didn't have the ring, or if the pc was carrying the
head of the mayor. Either one by itself is a reason for the guard to attack.)

A Confession
Right now, I have to admit that I've been lying to you all throughout the past three
lessons. Multiple times, I've said that I use the methodology I do is because I am doing
everything the way I would inside a real module. But now I have to come clean – not a
single script I have done here is really the way I would put it in final form.

The problem is, that our npcs so far have been totally unresponsive to most stimuli. The
guard we finished up top is starting to get there, but I would hardly call its behavior
realistic. If you're interested, here is an experiment you could do: Beef up the hp and
level of the guard. Start up the module. Get the ring, so the guard will be friendly to you.
Then go attack the guard. It will just stand there, and let you beat on it. This is definitely
not what we want from most of our npcs.

The reason that we have been creating such morons is that we threw away all of
BioWare's hard work in writing scripts. The default scripts that we have been deleting
define a number of useful "standard" behaviors that we really probably want to keep in
almost every instance. (Actually, one of the npcs we'll be creating today we will want to
throw away the default scripts, but more on that when we get to it.)

So, how do we define our own behavior, without throwing away all the default stuff? We
use the "user defined" script handle. If we are clever, we can really use every other
handle – we'll make only minor modifications to the OnSpawn script, and do most of our
scripting in the UserDefined.

We've spent so much time on our guard so far, let's go ahead and fix it up to the way it
should be.

• Open up the Test Module
• Remove the guard
• Create a new npc where the guard was (So we have all the default scripts back)
• Change the npc tag to GUARD
• On the "Advanced" tab, make sure the guard has faction of "commoner."
• Go to the scripts tab
• Edit the "OnSpawn" script. There is a lot of stuff here, we'll ignore most of it.
• Go down to the bottom of the script. Find the line:

NWScript:

//SetSpawnInCondition(NW_FLAG_PERCIEVE_EVENT);
//OPTIONAL BEHAVIOR

 Fire User Defined
Event 1002

• On that line, remove the first //. (Keep the second, in front of OPTIONAL)
• Save the script as tm_guard_os
• Close the script window, and go to the OnUserDefined handle.
• Select the script tm_guard_op
• Open it up into the editor. Save it as tm_guard_ud
• Update the comments to reflect that it is in a new place, and has a new name.
• Save again.
• Ok your way out of the guard, and save your module.

Now, if we start up the module, the guard will behave more realistically. He still does the

"friend or foe" reaction that we scripted into him, but also reacts to other stimuli. If you
attack him, he fights back. There are lots of other behaviors that are scripted in there,
many of which happen "behind the scenes" that you will probably never notice.

So, what did we actually do? Well, when removing the // in the OnSpawn script, we
"uncommented" something. Remember that anything after // on a line in a script is
ignored. So what BioWare did was put in a bunch of "optional" stuff into the OnSpawn
script, and put // in front of it so that it wouldn't happen.

But now, we want some of it to happen. By removing the //, now we are saying that we
want that line to actually take effect.

So, what does that line we "put back in" actually do? In essence, it is saying: "When you
are running the OnPerception script, also do what I put into the OnUserDefined script."

Now, the more astute of you might be thinking ahead, and asking "What if I want to have
multiple new behaviors from an npc? What if I want to have it do something special on
OnPerceived and also on OnHeartbeat?"

It can still be done, but takes a bit of extra work. Just to keep the script small, let's make
an npc that does something simple. It will say "I'm bored," every six seconds, and bow
when it sees a pc.

• Open the toolset, paint the npc, and give it the tag BORED
• Open the OnSpawn script, and uncomment the lines for the OnHeartBeat and

OnPerception lines.
• Notice that each of these has a "number" associated with it. 1002 for

OnPerception, and 1001 for OnHeartBeat.
• Save it as tm_bored_os
• Put the following script into OnUserDefined, and save as tm_bored_ud

NWScript:

// On User Defined Script: tm_bored_ud
// Will be called by the OnHeartbeat and OnPerception scripts
//
// The npc will complain about being bored every six seconds,
// and will bow if it sees a pc.
//
int nCalledBy=GetUserDefinedEventNumber();
void main()
{
 switch(nCalledBy)
 {
 case 1001: // Called by OnHeartbeat

 ActionSpeakString("I'm bored.");
 break;
 //
 case 1002: // Called by OnPerception
 object oSeen=GetLastPerceived();
 if (GetIsPC(oSeen) && GetLastPerceptionSeen())
 ActionPlayAnimation(ANIMATION_FIREFORGET_BOW);
 break;
 }
}

Question and Answer time....

What is this GetUserDefinedEventNumber?

This is exactly the number I told you to pay attention to up there. BioWare was very
clever... not only can each different handle call the user defined script, but each one
passes a different number to it when it does so. So, what I'm doing in that first line is
checking which one of the scripts called this one. Was it the Heartbeat (1001) or the
Perception (1002)?

What about this switch command?

I don't want to go a whole lot into detail on this one. Basically, you give it an input of an
integer, and the script then "jumps" to the line marked with "case" and that number. So if
our nCalledBy is 1001, the script looks down for the line "case 1001:"

It starts doing commands at that point, until it gets to a break.

A few notes on formatting: The switch command only looks within the lines tied to it
with { and }. Also, like the if statement, there is no semicolon after the switch line.

When I'm writing UserDefined events, I usually try to always set them up with a switch
like this, even if I only plan on having one type.... just because I might change my mind
later. It is better to be prepared for a possibility, than have to monkey with a bunch of
work because you were too lazy to plan ahead.

Hey, you didn't use { and } with your if statement!

If there is only one command attached to the if statement, the curly braces aren't needed.
To me, sometimes it looks better with them, and sometimes without them. I go with
whichever makes the script look cleaner. In this case, I decided that they would just
clutter up the script.

One More Example
At this point, you know a good deal about scripting. I shouldn't be calling these Absolute
Beginner lessons any more, because you aren't. There are still a lot of functions you need

to learn, and a few more tricks. But really, there are lots of cool things that we can do
with what we've learned so far, if we put the pieces together.

I'm going to do an example like that now. The script is pretty complicated, requires a lot
of setup, and uses some new commands. But I think the end result is worth it.

• Open up the Test Module
• I want to get away from our guard, so go back to the first area that we created.
• Remove the SINGER npc that is there
• Paint in a module start point
• Paint a commoner npc in one corner of the room. (Doesn't really matter if it is a

commoner, we're going to change pretty much everything.)
• On the "Basic" tab: Change the first name to Dartboard, the tag to DARTBRD,

the race to "Construct", the appearance to Archery Target, the gender to none, and
the portrait to po_PLC_F01_ (found by clicking the "Placeable Objects and
Doors")

• On the "Advanced" tab, check the "Plot" box.
• Still on the Advanced tab, go to the faction editor. Create a new faction "Target",

whose parent faction is "Hostile." Set both Target-Commoner and Commoner-
Target to 50.

• Changet the Dartboard faction to Target.
• On the "Scripts" tab, delete all the scripts. (In this case we don't want the

dartboard going on a rampage and attacking people.)
• Edit the "OnDamaged" handle. Put in the following script.

NWScript:

// OnDamaged Script: tm_dartbrd_dm
// Dartboard script
// Goes "thunk" when hit with a ranged weapon.
//
void main()
{
 if (GetWeaponRanged(GetLastWeaponUsed(GetLastAttacker())))
 {
 SpeakString("**Thunk**");
 }
}

• If you want, you can test out just the dartboard by saving and loading up the
module, but that isn't the cool part.

• Paint a waypoint about 1 square away from the dartboard.

• Give it the tag DARTWP001
• Paint a commoner npc near the waypoint.
• Change the npc tag to DARTPLAY
• For fun, click the "random name" button.
• Under the "Feats" tab, give it "Weapon Proficiency (simple)"
• Click the "Inventory" button, under the full body picture of the npc
• On the right, go to "Weapons", "Throwing", "Dart" and drag it to the "Contents"

spot.
• Right click the dart you just dragged over, edit the properties, and change the

stack size to 3
• Click OK, then click and drag the dart up to equip it on the npc.
• Click OK again, to get out of the inventory.
• Now, we go to the scripts tab.
• Edit the OnSpawn script, uncomment the HeartBeat line.
• There is another line to uncomment as well: SetSpawnInCondition

(NW_FLAG_SET_WARNINGS);
• Also, add in a line somewhere: SetLocalInt(OBJECT_SELF, "DARTSTATE", 1);
• Save the script as tm_dartplay_os
• Now go to the UserDefined handle, and add in the following script:

NWScript:

// On User Defined Script
// tm_dartplay_ud
// Used to have someone play darts. Called by the OnHeartBeat
script.
//
// The Dart Player will throw all darts in inventory (should
start with 3),
// walk to the dartboard, get 3 darts, walk back, and repeat.
//
void main()
{
 int nCalledBy = GetUserDefinedEventNumber();
 object oTarget = GetNearestObjectByTag("DARTBRD");
 int nDartsReady = GetLocalInt(OBJECT_SELF, "DARTSTATE");
//
 switch(nCalledBy)
 {
 case 1001: // Called by OnHeartbeat
 //
 // nDartsReady will be 1 if ready to throw, 2 if not.
 //
 if
((GetIsObjectValid(GetItemInSlot(INVENTORY_SLOT_RIGHTHAND)))
 && (nDartsReady == 1))
 {
 // If we have darts in the right hand, and we're
ready to throw, go for it.

 ClearAllActions();
 ActionAttack(oTarget, TRUE);
 }
 else
 {
 // Otherwise, there are two cases. We've either
just run out, or we are in
 // the process of getting darts. We don't want to
interrupt the cycle if we're
 // already working on it.
 if (nDartsReady == 1)
 {
 SetLocalInt(OBJECT_SELF, "DARTSTATE", 2);
 ActionMoveToObject(oTarget);
 ActionWait(0.5);
 ActionPlayAnimation(ANIMATION_LOOPING_GET_MID,
1.0, 1.0);
 ActionWait(0.5);
 ActionPlayAnimation(ANIMATION_LOOPING_GET_MID,
1.0, 1.0);
 ActionWait(0.5);
 ActionPlayAnimation(ANIMATION_LOOPING_GET_MID,
1.0, 1.0);
 object
oDestination=GetNearestObjectByTag("DARTWP001");
 ActionMoveToObject(oDestination);
 CreateItemOnObject("nw_wthdt001", OBJECT_SELF,
3);
 ActionEquipMostDamagingRanged();
 ActionDoCommand(SetLocalInt(OBJECT_SELF,
"DARTSTATE", 1));
 }
 }
 break;
 }
}

Well, this is a really complicated script. I'm not going to explain absolutely everything
about it, but I'll point out a few key things.

I'm using the local variable DARTSTATE to make sure that we don't attack when not
ready, or go through the "get darts" sequence multiple times.

The ActionDoCommand is amazingly handy. It takes a non-queued command, and turns
it into a queued one. Normally, as soon as the script sees a SetLocalInt instruction, it sets
the local variable. This forces the script to wait until the npc has completed all the
previous actions.

The CreateItemOnObject is what is used to make the new darts for the npc.
"nw_wthdt001" is the blueprint ref for a dart, and the final 3 is the stack size.

Other than that, see if you can trace through the script yourself. There are other new

commands, but most of the names are pretty self explanatory. As always, ask questions if
you can't figure it out.

Coming Lessons
I haven't decided on exactly what order I want to do things in yet. It might be a few days
until I get another lesson out. However, here are a few things that I want to talk about:

• Other script handles
• Scripting for objects
• Scripting in conversations
• Other things as I think of them, and as people suggest them

USING DIALOGUE WITH PLACEABLES AND TRIGGERS
There are lots of effects that a savvy DM can simulate just by using a bit of dialogue in
conjunction with a placeable or trigger. You can have ambient descriptions of an area or
object appear, start a 'dialogue' with a strange object that allows the player options of
interacting with it, have someone on the other side of a door speak through it, inform
players of events that occur... there are lots of possibilities.

The first thing you should know is what your options are. The following are commands
that can be used to initiate dialogue or display text:

Action Speak String and SpeakString
The only difference between these two actions is that ActionSpeakString puts the
command into the action queue (meaning it will not be performed until previous actions
in the queue, such as ActionWait or ActionMoveToObject, have been completed) and
SpeakString is performed immediately.
What it does: causes a line of text to be displayed over the performer of the command.
This is displayed to the player as normal dialogue, the text appearing beside the name of
the object and its portrait (if applicable).
Advantages: A "volume" can be applied to the text by placing the appropriate
TALKVOLUME_* constant in the command. TALKVOLUME_TALK is the default and
is heard by all at normal range. TALKVOLUME_SHOUT is heard by all in the module.
TALKVOLUME_WHISPER is heard by all at close range.
TALKVOLUME_SILENT_TALK and TALKVOLUME_SILENT_SHOUT are variants
on the normal talk and shout... but they will only be displayed to and heard by non-
players.
Part of having a volume is that the text is 'heard' by objects in the game. Creatures within
hearing range will turn their heads to notice, and if you are doing any text-recognition
scripting via SetListenPattern and GetListenPatternNumber (such as combat 'shouts'),
SpeakString can be used for that purpose.

ActionStartConversation
What it does: the commands the performing object to initiate dialogue with the target. It
will set off the target's OnDialogue event (if they have one, which PC's do not). If no
dialogue file resref is specified, the one attached to the creature or object will be used (the
one you specified in the toolset). The token in the conversation will always be the target
object.
Advantages: You can start a full conversation this way, with response choices and
multiple starting conditions and scripts running off of it. You can also specify in the main
command whether or not this is a private conversation... if it is, then only the target will
see the text displayed on-screen (great for interacting with objects, since other players
wouldn't 'hear' this conversation).

BeginConversation
What it does: this command is normally only used in the OnDialogue event of creatures.
This is the command that tells them to start dialogue with the player that just clicked on
them. Using it on an object does not set off their OnDialogue event. If the target of the

action is not specified, the object that initiated their OnDialogue event will be used.
Advantages: Can be used for NPC to NPC conversations... otherwise
ActionStartConversation should always be used outside of the OnDialogue event.

FloatingTextStringOnCreature
What it does: when you perform many actions in the game, you will notice that the text
that appears over the player's head floats upward and fades away. This command does the
same thing. The text also shows in the player's chat display... it does not show as
originating from any creature, nor does it show any portrait. The text simply displays in
yellow, as most ambient text does.
Advantages: great for ambient text or simulating a written display of an action, since it
does not prefix the text with a name or even look like dialogue in the display.
One Thing to Be Aware of: Floating text, by default, is ONLY able to be seen by the
creature that it is floating over. If you set the command 'display to faction', then members
of the same faction will also see the text displayed. This does mean that floating text is
really only useful on PC creatures, since no non-PC creature of object can be set to the
PC faction.

SpeakOneLinerConversation
What it does: it acts very much like ActionStartConversation, but its purpose is more
specific. It is meant to access the dialogue file, but only for a single line with no
responses or links.
Advantages: You can still script the starting conditions for the dialogue file, so you can
have a whole selection of single-liners that the speaker can choose from... and you can
still use action scripts off of those lines. The speaker does not turn to any target before
speaking... and the object identified in the command (if one is) becomes the reference for
any tokens used in the dialogue (even if they are not present).

Making A Placeable Object Display Text
For the example I'm going to use here, we're going to make a placeable object signpost
display text for the player that clicks on it.

IMPORTANT! If you are going to have any placeable object interact with others in
this way, make sure the 'Static' box is unchecked! If a placeable object is static, it is
intended to be merely part of the background art and unselectable. Most placeable objects
are marked static by default!

So select a signpost from the placeable object list and place it down. Then go into its
properties and make sure 'Static' is unselected. Since I want the player to be able to click
on the signpost, check the 'Useable' box.

Go into its script section and put the following script under the OnUsed event:

NWScript:

void main()
{
 SpeakString("North: Waterdeep, 20 miles");
}

Now when you are in the game and click on the signpost, it will display that text next to
its portrait (which is, by default, a signpost) and name. Naturally you can always change
the portrait to whatever you like, as well as the name, and the display will be different.

Making a Trigger Display Floating Text
In this example, we want it so that when a player crosses into a laid-down trigger, a piece
of ambient text appears over their head.

Go into the trigger menu and select 'Generic Trigger'. This will allow you to draw the
bounds of the trigger box. If I wanted to display a description of something the player
sees in a room, for example, I might put this just inside a door.

Then go to the scripts section of the trigger. Since we want the text to appear when the
player enters the trigger, we'll put the script in the OnEnter event. Some things to
consider: do we want it to display only for PC's, or every entering creature? Do we want
it to display every time a PC enters, or only once? For now, I'll have the text appear on
anyone who enters the trigger... but only the first time.

NWScript:

void main()
{
 object oPC = GetEnteringObject();
 if (GetLocalInt(oPC, "Saw_Trigger_Text") == FALSE)
 {
 FloatingTextStringOnCreature("The room is dark and
spooky.", oPC);
 SetLocalInt(oPC, "Saw_Trigger_Text", TRUE);
 }
}

When the player steps into the trigger in-game, the text will appear over their heads and
float up, fading. It will also display in their chat display window in yellow.

Note that triggers can't use SpeakString or ActionSpeakString. They simply can't speak,
period. It can, however, tell another object to speak... whether that object be an invisible
object right on it or elsewhere. If I had a nearby placeable object with the tag

"DISPLAY_HERE" (which had its 'Static' box unchecked, remember) and I wanted the
trigger to make it display the above text, I would use this script:

NWScript:

void main()
{
 object oPC = GetEnteringObject();
 object oDisplay = GetObjectByTag("DISPLAY_HERE");
 if (GetLocalInt(oPC, "Saw_Trigger_Text") == FALSE)
 {
 AssignCommand(oDisplay, SpeakString("The room is dark and
spooky."));
 SetLocalInt(oPC, "Saw_Trigger_Text", TRUE);
 }
}

Having an Object Display Text When a PC Comes Near
In this example, I'm going to lay down an invisible object (that the players can neither
see, highlight nor touch) that is going to display text when a player comes within 10
meters.

First, select the Invisible Object from the placeable object menu and lay it down. Go into
its properties and make sure 'Static' is unchecked. I don't want the player to be able to
click on it, so leave 'Useable' unchecked. Change the name of the object to 'Unknown
Person' and leave the portrait blank.

Go into its scripts section. Put the following script into its OnHeartbeat event:

NWScript:

void main()
{
 object oPC = GetNearestCreature(CREATURE_TYPE_PLAYER_CHAR,
PLAYER_CHAR_IS_PC);
 if (GetIsObjectValid(oPC) && (GetDistanceToObject(oPC) <
10.0))
 {
 SpeakString("Psst! Come over here!");
 }
}

In the game, when the player gets within 10 meters of the object, the text will be
displayed on-screen... and in the chat display window it will read "Unknown Person:
Psst! Come over here!". That text will repeat every 6 seconds (every heartbeat) that the
PC remains within range.

I could further develop the script by adding to the above script... say, checking to see if
the player comes within 3 meters and spawning in the 'appearing' Unknown Person on
top of the placeable object.

One thing you might notice is that the placeable object is pretty small... and text
displaying over it appears pretty low to the ground (depending on how zoomed-in the
camera is). Here's a trick to place it higher: before placing the invisible object, select
another placeable object that is about as high as you need the invisible object to be. Place
it, first. Then when you select the invisible object from the menu, place the cursor
directly 'over' the first object before clicking to set it down. It will appear on top of the
first object. Now delete the first object and your invisible placeable floats in mid-air (and
will stay there).

Having a Placeable Object Start a Dialogue
Let's say that I want an object that the player can select and get an interactive dialogue...
or perhaps the object actually speaks.

First, go into the placeable objects list and pick out an object. Select a pedestal, for
instance, and place it in the module. Go into its properties and ensure that 'Static' is
unchecked and 'Useable' is checked.

Go to the advanced tab. Write in a name for the dialogue file we are going to create and
press Edit. You can start with a line like "There is some fine writing on the pedestal
which is in a strange language. Do you try to decipher it?" You could then continue to
give responses and make the dialogue as long as you like, just as normal dialogue.

Go into the scripts tab and place the following script under OnUsed:

NWScript:

void main()
{
 object oPC = GetLastUsedBy();
 ActionStartConversation(oPC, "", TRUE);
}

In the game, when the player clicks on the pedestal, he will approach it and the dialogue
will ensue normally. Since I specified TRUE in the bPrivateConversation parameter of
the command, only he will see the dialogue... another player standing next to him would
see and hear nothing.

If I didn't care whether the text displayed, I could simply have written
ActionStartConversation(oPC), since the "" just means that the attached dialogue file is
used.

Starting a Conversation With a Door
Let's say I want to simulate this: the player selects a door to open but finds it locked. A
voice speaks from the other side: "What's the password?"

First, place the door normally. Go into its properties and change the name. The great
thing about a door's name is that it doesn't show up anywhere (even on Examine) except
in dialogue... so let's change it to "Guard on other side", since that's what the player will
see.

Mark the door as 'plot' so it can't be broken down (although you could certainly let it be,
and even script consequences for attempting to bash in the OnDamaged or
OnPhysicalAttacked events). Go into the lock tab and check the 'Locked' box. If you
don't want it pickable, check the 'Key required to lock or unlock' box (although, again,
you can leave it if you wish).

Go into the advanced tab and put a name into conversation and press Edit. We can make
the first line "What's the password?" and continue as we wish... whenever the point in the
dialogue is reached where the guard agrees to open the door, place this script in that
node's 'Actions Taken' section:

NWScript:

void main()
{
 ActionDoCommand(SetLocked(OBJECT_SELF, FALSE));
 ActionOpenDoor(OBJECT_SELF);
}

Now we have to place the script that starts the conversation. Place the following script in
the OnFailToOpen event:

NWScript:

void main()
{
 object oPC = GetClickingObject();
 if (!IsInConversation(OBJECT_SELF))
 {
 ActionStartConversation(oPC);
 }
}

In the game, then, the player will click on the door and approach it. He will get the 'door
rattle' sound when the door fails to open, and suddenly the dialogue will appear. He will

see the portrait of the door and 'Guard on other side' at the top... with the text "What's the
password?" displayed. When the dialogue point is reached for the door to open, it is
unlocked and swings open... the player can now use the transition beyond.

Those are a few examples of using text and dialogue with objects. Hopefully they will be
of some use to you.

[Edited By David Gaider: Monday, 15 July 07:42AM (GMT)]

ERFs : WHAT THEY ARE AND WHAT THEY'RE GOOD FOR
by Darmoor Dragon

.ERF Files - Drag and Drop NWN for non-scriptors?

The NWN Toolset provides an excellent feature for importing and exporting certain
elements from within one Module to another in a format of .erf (exported resource file?).

This allows Module makers to export elements such as conversations, scripts, entire areas
or the "blueprints" for placeables, items, creatures, sounds, triggers and more!

Why are .ERFs a good thing?

ERFs export from a module with "everything attached" - as an example if you exported a
chair that had a custom script on it that allows a player to sit on it, then not only will the
chair be exported but it will include the custom script

placed within the chair in its appropriate script location.

This means that if you import this into any other module you can simply select the chair
and place it as a custom object and it will already be a "working sitable chair". Similarly
NPCs exported with custom scripts will export with all non-default scripts attached to
them (including conversation files).

One distinct advantage in this is that you (the end user) need not worry about messing up
a script within/on a creature or placeable, putting a script in the wrong event, misnaming
a script and so on: ERFs are largely self-contained and where they don't work its probable
they never did, or, some extra element is missing.

Some examples:

A working Smith:

I create a working smith that hammers on an anvil, complete with sounds, special effects
and a conversation tree and stops working whenever a Player comes within a trigger (thus
allowing the smith to be made into a merchant).

As a scripting exercise this can be quite complex - as an ERF it is simple:

The creator of the Smith simply exports 3 ERFs: 1 for the smith "creature", 1 for the
"anvil" and one for the trigger. The "user" simply imports the 3 files and places them.
That's it! Working smith, no scripting required...well, not by the end user anyway.

A working Ballista:

..that fires AoE Acid bolts... Import just the one "Acid Bolt Ballista" .erf and that's it.
Place this custom placeable in your module and it works...done.

A Woodcutter and regrowing trees:

3 .erfs: Woodcutter, stool and a "chopable tree".. once again place all 3 objects and it
works, a living breathing (and singing) lumberjack who cuts down trees that grow back
afterwards.

ERFs - how to:

ERFs work by being added to the Custom Palette for the module, importing ERFs
automatically adds those elements to the Custom Palette but to Export them you must
first add the element to the palette.

Once again this is very simple: simple right-click on the element to add and you will see
an option to "Add to Palette" - once done you can export it.

When Exporting the ERF you can also add in text information on how to use the ERF.
This information is displayed to the Importer when they import the ERF and any
instructions and warnings on use should be placed in this area.

Importing is equally simple - Open the module you want to import the ERF into, and go
File -> Import, then browse to the .erf file you want to import. The creators user
information and guidelines (as detailed above) will show up and the file will be added to
your own modules palette. That's it.

Important points:

Using ERFs is fundamentally simple and excellent for the distribution of module
elements - Especially to the more scripto-challenged of us (aka: myself). Having said that
there are some points that need to be watched very carefully.

Naming conventions and Import/Export issues:

When you import an ERF it brings in the attached scripts it uses "in the background" but
it does tell the user if any name conflicts happen with existing script/file names in the
module. Choosing to overwrite existing names can cause your module to experience
problems.

Because of this it is important for those who export ERFs to use specific filename on any
attached scripts and files such as conversations. e.g don't save a "smith" script as "smith"
but use something like JMN_smith (yourinitals/module initials_smith) or similar.

This makes it far less likely that you will overwrite any existing script names in the end-
users module.

For the "End-User":

When importing ERFs if you get a warning of any filename conflicts do NOT overwrite
them - instead make a note of the filenames and cancel the importation. To get around
such issues simply import the ERF into a new "empty" module and rename the files so
they won't conflict (obviously this may require editing relevant script functions in the
elements - no way around that sorry).

Distributing ERFs

Ideally ERFs should be "packaged" within a Zip file including a readme on how to use
the elements within them. Those "packages" with multiple ERFs (such as the smith, anvil
and trigger) require all elements to work as intended, how to place them and edit them
should be included in the readme file.

Obviously ERFs need to be downloaded or emailed to the end-user, so you're going to
need to host these files somewhere. For those without their own webspace, sites such as
NWN Vault will hopefully start to host them (once ERFs are a little more commonly
used and understood) their file sizes are tiny; barely larger than their component scripts,
and emailing them as attachments is also an option.

Where to get existing ERFs?

Gulbsoft.de allready have some ERFs available : Click Here

Alternatively wherever you see people posting about working elements within their
modules - or scriptors who have a working element that you would lie, rather than having
to mess around with creating your own and editing scripts , then ask them to provide
ERFs.

If they have a working example in their module it really is little more effort than a right-
click, add to palette and Export File.

Happy ERFing!

http://web469.can05.de/modules.php?name=Downloads&d_op=viewdownload&cid=2

FACTIONS, SHOUTS AND ATTACKING MY ENEMY

Just what is a faction?
A faction is one of three things: a party of player characters & their associates, a single
player character who is not a member of a party & his associates or a group of NPC's or
single NPC's that have been assigned to a set default relationship to other factions.

This is not to be mistaken with an 'organization', like a guild of thieves or a city's
garrison. Players do not 'join' factions, and any organization could conceivably comprise
of a number of factions.

What do factions do, then?
Just what they are supposed to do: set the default stance of the NPC towards other
factions. The generic AI takes a stance of 'Friendly' or 'Hostile' and has the NPC react
accordingly in its scripts. An NPC will maintain that default stance until and unless it is
told to do otherwise.

What is probably most important to understand about factions, however, is that there is a
difference between how the faction feels and how the individual NPC feels. If an
individual NPC within a faction is attacked, he will go hostile and defend himself. He
will remain hostile until told to do otherwise. The other members of his faction not
present, however, will not necessarily go hostile along with him. This difference of
standing towards someone is considered reputation, which is different from that
someone's reputation with the faction. The NWScript commands, unfortunately, refer to
both types of reputation in the same manner, so distinguishing between them can be
tricky.

To better explain the difference, consider this:

A party of PC's is inside a tavern. The rogue in the party decides to attack a nearby
peasant (who is a member of the Commoner faction). Upon being attacked, that peasant
goes hostile to the rogue... and issues a shout to any nearby NPC's who are friendly to his
faction to likewise go hostile to the rogue. The rest of the party hasn't done anything, yet,
so nobody is hostile towards them.
If the rest of the party gets involved in the fight, the witnessing NPC's will likewise go
hostile towards them. Let's say the entire party flees the tavern immediately and escapes
their pursuers... those individuals who turned hostile towards the rogue (or other
interfering party members) will remain hostile until told otherwise. Other members of the
Commoner faction, however, will react normally.

The only way this wouldn't happen is when a faction has its 'Global Effect' box checked
(this can be found in the Faction Editor). This eliminates individuals within a faction
maintaining separate relations... if you attack one and it goes hostile, all members of the
faction go hostile. Any change to a single member's relationship affects the entire faction.
(There are instances in module design where this is desirable... but be aware of it,

especially due to the fact that new factions are global in effect by default.)

What does the standard AI do with factions?
To better understand why something is or isn't happening, here's a rundown on how
factions affect the standard AI:

• in the OnPerception event (which, remember, fires only when the target first
comes into perception range or if the perception type changes), if the NPC
perceives a hostile and is not already in combat it issues the
"NW_I_WAS_ATTACKED" shout (see below) and attacks.

• if the creature is attacked and it is not already in combat, it issues the
"NW_I_WAS_ATTACKED" and "NW_ATTACK_ MY_TARGET" shouts and
attacks its attacker.

• if the creature is killed it automatically issues a "NW_ATTACK_MY_TARGET"
and "NW_I_AM_DEAD" shout.

And what do these shouts do? For one thing, they are simply spoken words that the
creature has been told to speak, the same as any PC typing words with their chat system.
These shouts, however, are 'silent'... players don't hear them or see the floating text, but
NPC's do, and the generic AI in the OnSpawn script tells them to listen for them and
react. Shouts are not heard through walls or beyond doors, and do have a limited range.

• the "NW_ATTACK_ MY_TARGET" shout only has an effect on those NPC's
who have uncommented the line 'SetSpawnInCondition (NW_FLAG_SHOUT_
ATTACK_MY_TARGET);' in their OnSpawn script. If heard by an ally (one
who's faction is friendly to the shouter), it sets the faction relationship to the
shouter's attacker to hostile (if not already so), stops what it's doing and attacks
any enemy within sight.

• the "NW_I_WAS_ATTACKED" shout can be heard by anyone. If the listener is
an ally of the shouter and is neither currently in combat nor has less than 10
Commoner levels, it will attack the attacker of the shouter.

• the "NW_I_AM_DEAD" shout can also be heard by anyone. It's effect is the
same as the 'I was attacked' shout above.

HOW DO I MAKE MY NPC'S ATTACK?

If a creature starts out as hostile and spots a PC, its OnPerception event will fire and it
will immediately attack. No problem there. The situation arises fairly often, however,
where you will have a NPC who was neutral to the PC when the OnPerception event fired
and will become hostile through the course of a dialogue or scripting.

To turn a single NPC hostile to the PC and make him attack, you must first identify the
target. In dialogue, this is easy:

object oTarget = GetPCSpeaker();

Outside of dialogue, in a normal script, it can vary:

object oTarget = GetNearestCreature (CREATURE_TYPE_PLAYER_CHAR,
PLAYER_CHAR_IS_PC);
// this targets the nearest player character to the caller of the
script

object oTarget = GetLastPerceived();
// this is the last perceived object, only to be used inside the
OnPerception event

The above are two possibilities. Regardless, once you've identified your target, you can
call the rest of the commands as normal. For the following scripts, we'll assume that we're
starting combat off of dialogue (by placing the script in the 'Actions Taken' section of the
dialogue line where we want combat to start).

First, do I want the attacker to turn the whole faction hostile? To do so, I use this:

NWScript:

#include "NW_I0_GENERIC"
void main()
{
 // lower my faction's relationship with the PC by 100 (to
hostile)
 AdjustReputation (GetPCSpeaker(), OBJECT_SELF, -100);
 // start combat (this requires the nw_i0_generic file to be
included, above)
 DetermineCombatRound();
}

And that's it (this is also the "nw_d1_attonend" generic script). Should I just want the
attacker to go hostile (and no-one else):

NWScript:

#include "NW_I0_GENERIC"
void main()

{
 // set myself to hostile against the PC
 // note that the 'temporary' is 3 minutes in length unless a
specific
 // amount of time is supplied in the command.
 SetIsTemporaryEnemy (GetPCSpeaker());
 // start combat (this requires the nw_i0_generic file to be
included, above)
 DetermineCombatRound();
}

But suppose I have other friends nearby who I want to make part of the combat, as well?
Even if I use AdjustReputation to make their faction hostile, they still won't attack. Why?
Look at the cases under the generic AI... I wasn't attacked first and am already in combat,
so I won't issue those shouts. We've all already perceived the PC, and he wasn't an enemy
then. And I'm not dead... so my pals will sit there until attacked or until I'm dead.
I've got two choices. Either send them the command via AssignCommand like this:

NWScript:

#include "NW_I0_GENERIC"
void main()
{
 // this script works great if I know exactly who I want to
involve in the fight
 // and they have unique resrefs
 object oGoblin2 = GetObjectByTag ("GOBLIN2");
 object oGoblin3 = GetObjectByTag ("GOBLIN3");
 // lower my faction's relationship with the PC by 100 (to
hostile)
 AdjustReputation (GetPCSpeaker(), OBJECT_SELF, -100);
 // tell my friends to start fighting
 AssignCommand (oGoblin2, DetermineCombatRound());
 AssignCommand (oGoblin3, DetermineCombatRound());
 // start combat (this requires the nw_i0_generic file to be
included, above)
 DetermineCombatRound();
}

Or like this:

NWScript:

#include "NW_I0_GENERIC"
void main()
{
 // this script will make every ally within the current area
attack
 location oHere = GetLocation (OBJECT_SELF);
 // lower my faction's relationship with the PC by 100 (to
hostile)

 AdjustReputation (GetPCSpeaker(), OBJECT_SELF, -100);
 // now cycle through all objects in my area
 object oFriend = GetFirstObjectInArea (GetArea(OBJECT_SELF));
 while (GetIsObjectValid(oFriend))
 {
 // if the object is a creature that is a member of my
faction
 if (GetFactionEqual(oFriend) && (GetObjectType(oFriend)
== OBJECT_TYPE_CREATURE))
 {
 // and it can see the PC
 if (GetObjectSeen (GetPCSpeaker(), oFriend))
 {
 // tell him to start combat
 AssignCommand (oFriend, DetermineCombatRound());
 }
 // otherwise, if he can't see the PC
 else
 {
 // tell him to stop what he's doing
 AssignCommand (oFriend, ClearAllActions());
 // and come to my location
 AssignCommand (oFriend,
ActionMoveToLocation(oHere, TRUE));
 }
 }
 oFriend = GetNextObjectInArea (GetArea(OBJECT_SELF));
 }
 // now start fighting, myself
 DetermineCombatRound();
}

There are also other variations to do the above... those are really just examples. Another
easy way to start a group fight is to make sure all the combatants have the
'SetSpawnInCondition (NW_FLAG_SHOUT_ ATTACK_MY_TARGET);' line
uncommented in their OnSpawn script. Then, when you start the attack, you can just do
this:

NWScript:

#include "NW_I0_GENERIC"
void main()
{
 // lower my faction's relationship with the PC by 100 (to
hostile)
 AdjustReputation (GetPCSpeaker(), OBJECT_SELF, -100);
 // start combat (this requires the nw_i0_generic file to be
included, above)
 DetermineCombatRound();
 // and shout to my allies in the vicinity to join me
 SpeakString ("NW_ATTACK_MY_TARGET", TALKVOLUME_SILENT_TALK);
}

You won't see the string displayed, but any allies within hearing range who can see the
target will run to the attack.

NOW HOW DO I MAKE MY NPC'S NEUTRAL AGAIN?
If you want to make an NPC non-hostile once it's been in combat with the PC (usually if
the PC has died or for plot reasons), you have to make sure two things have happened:
one, that the faction's attitude towards the player is non-hostile (either neutral or
friendly). Two, if the faction doesn't have 'Global Effect' checked, you have to clear the
NPC's personal feelings towards the PC.

The 'standard' factions in the game (Commoner, Defender, etc) are the only ones that can
do both of these in one single command. This is done through the SetStandardFaction
command, and an example of this is in the default death script ("nw_o0_death"), which
re-sets all standard factions to neutrality on a player's death. (NOTE: Several people that
have reported that the Defender faction is not re-set when this command is used, but can
be re-set if treated as a custom faction below.)

For custom factions, you need two commands: AdjustReputation to change the faction's
relationship with the target and ClearPersonalReputation to change an NPC's feelings. In
both cases, you must single out a target that is a member of a faction (which may be
difficult if you have many members with separate tags or that may be dead)... custom
factions aren't identified by name, you can only say 'the faction that so-and-so belongs to'.
And if you want to clear the a PC's personal reputation with an entire custom faction, you
have to cycle through it.

Here's an example script that will adjust a faction towards neutral and cycle through it,
restoring every member to a normal relationship with the PC. This faction does not have
its 'Global Effect' checked, obviously, and has members with the same tag "GOBLIN01".
The PC has died and this script is within his OnDeath event:

NWScript:

// I'm creating a custom 'ClearAll FactionMembers' command, here
// first declaring the api for the new command, then what it does
// I could reasonably have put this in a separate script and
// used #include to put it into this script (and others), as well
void ClearAllFactionMembers (object oMember, object oPlayer)
{
 object oClear = GetFirstFactionMember (oMember, FALSE);
 while (GetIsObjectValid(oClear) == TRUE)
 {
 ClearPersonalReputation (oPlayer, oClear);
 oClear = GetNextFactionMember (oMember, FALSE);
 }
}

// here's the main body of my script
void main()
{
 // identify the player
 object oPlayer = GetLastPlayerDied();
 // identify a member of the faction. I'm assuming these
members are alive.
 // Otherwise, I would have to try several things to turn up a
member that is
 // first valid and then do the if command
 object oGoblin = GetObjectByTag("GOBLIN1");
 if (GetIsObjectValid(oGoblin))
 {
 // adjust the faction relation back up by 100
 AdjustReputation (oPlayer, oGoblin, 100);
 // run my custom command to cycle through the faction
 ClearAllFactionMembers (oGoblin, oPlayer);
 }
}

FUN WITH SHOUTS

A couple of things to try out or use, with regards to shouts.

First one: I always hate the fact that an NPC may hear the "NW_ATTACK_
MY_TARGET" shout... but they won't do anything if they can't see the shouter or the
target. They go hostile, but won't attack until the enemy comes into sight. Here's a way
I've successfully used to make out-of-sight listeners come to investigate the shout.

step 1 - First thing that must be done is that all members of the faction who will respond
to the shout and also investigate a shout from nearby must have their OnSpawn script set
up accordingly. Go into their OnSpawn script and uncomment the following lines:
'SetSpawnInCondition (NW_FLAG_SHOUT_ ATTACK_MY_TARGET);'
'SetSpawnInCondition (NW_FLAG_ ON_DIALOGUE_EVENT);'
Then re-save the script under a different name.

step 2 - Remember that a creature will only shout 'attack my target' if he is attacked first
or killed. If you want him to shout it, himself, you'll have to put it into a script. There is
one supplied in the examples above that has the creature go hostile and make the shout
off of dialogue.

step 3 - Put the following script into each creature's OnUserDefined event:

NWScript:

// this script will make the receiver of a "NW_ATTACK_MY_TARGET"
shout come and

// investigate even if he doesn't see an enemy. Once he
approaches the shouter,
// if he sees an enemy his OnPerception script will activate and
he will attack.
// An interesting modification to this script would be to have
the out-of-sight
// receiver of the shout issue a second shout which would carry
the original shout
// further... this would, however, require a new shout and new
pattern definition
void main()
{
 int nEvent = GetUserDefinedEventNumber();
 if (nEvent == 1004) // OnDialog event
 {
 // this sees if the shout matches the pattern set by the
'SetListeningPatterns' in OnSpawn
 int nMatch = GetListenPatternNumber();
 object oShouter = GetLastSpeaker();
 object oIntruder;
 // if I recognize the shout and the shouter is a valid,
friendly NPC
 if(nMatch != -1 && GetIsObjectValid (oShouter) &&
!GetIsPC(oShouter) && GetIsFriend (oShouter))
 {
 // and the shout is "NW_ATTACK_MY_TARGET"
 if (nMatch == 5)
 {
 // attempt to define the shouter's enemy
 oIntruder = GetLastHostileActor (oShouter);
 if(!GetIsObjectValid (oIntruder))
 {
 oIntruder = GetAttemptedAttackTarget();
 if(!GetIsObjectValid (oIntruder))
 {
 oIntruder = GetAttemptedSpellTarget();
 if(!GetIsObjectValid (oIntruder))
 {
 oIntruder = OBJECT_INVALID;
 }
 }
 }
 // if I can see neither the shouter nor the enemy
 if (GetIsObjectValid (oShouter) && !GetObjectSeen
(oIntruder) && !GetObjectSeen (oShouter))
 {
 // define the location of the shouter
 location lShouter = GetLocation(oShouter);
 // stop what I am doing
 ClearAllActions();
 // and move to that location
 ActionMoveToLocation (lShouter, TRUE);
 }
 // otherwise, if I can see the shouter but not
the enemy
 else if (GetIsObjectValid (oShouter) &&
!GetObjectSeen (oIntruder) && GetObjectSeen (oShouter))

 {
 // stop what I am doing
 ClearAllActions();
 // and move towards the shouter
 ActionMoveToObject (oShouter, TRUE);
 }
 }
 }
 }
}

second one: Here's an interesting exercise that demonstrates how to make your own
shout. In this example, I want to have a dialogue that issues a shout and causes all who
hear it to perform the 'worship' animation (they think the PC is the 'one foretold').

step 1 - Let's set up the dialogue of the NPC who is going to issue the shout. Let's make it
very simple... one line of dialogue which says "It is the One Foretold!!" and then the
following script attached to the 'Actions Taken' area of that line:

NWScript:

void main()
{
 // set a variable on myself equal to the PC I'm talking to
 SetLocalObject (OBJECT_SELF, "worship", GetPCSpeaker());
 // issue the "BOWDOWN" shout
 SpeakString ("BOWDOWN", TALKVOLUME_SILENT_TALK);
 // perform the worship animation for 30 seconds
 ActionPlayAnimation (ANIMATION_LOOPING_WORSHIP, 0.5, 30.0);
}

step 2 - we have to set up the other NPC's in the area to listen to the shout. This involves
uncommenting the line 'SetSpawnInCondition (NW_FLAG_
ON_DIALOGUE_EVENT);' in their OnSpawn script as well as adding the following line
anywhere:

SetListenPattern (OBJECT_SELF, "BOWDOWN", 100);

This makes the string 'BOWDOWN' equal to the number 100 (picked at random) and
recognizable should the NPC be listening (using the command SetListening
(OBJECT_SELF, TRUE)... which is issues in the OnSpawn's SetListeningPatterns
command, anyway).

step 3 - now we just have to tell the NPC's what to do when they hear that command. Any
spoken string sets off their OnDialogue event... so the following script can be placed into
their OnUserDefined event:

NWScript:

void main()

{
 int nEvent = GetUserDefinedEventNumber();
 // if I receive the OnDialogue event
 if (nEvent == 1004)
 {
 // see if I heard a matching pattern
 int nMatch = GetListenPatternNumber();
 // identify who spoke the string
 object oShouter = GetLastSpeaker();
 // and grab the variable from the NPC as to who they're
bowing down to
 object oWorship = GetLocalObject(oShouter, "worship");
 // if the string is one I recognize and the speaker is a
friendly, valid NPC
 if(nMatch != -1 && GetIsObjectValid (oShouter) &&
!GetIsPC (oShouter) && GetIsFriend (oShouter))
 {
 // and the string pattern was equal to "BOWDOWN"
 if(nMatch == 100)
 {
 // turn to face the PC the NPC was talking to
 ActionDoCommand (SetFacingPoint
(GetPosition(oWorship)));
 // and then play the worship animation for 30
seconds
 ActionPlayAnimation (ANIMATION_LOOPING_WORSHIP,
0.5, 30.0);
 }
 }
 }
}

This obviously isn't everything there is to know about factions and shouts, but hopefully
the information is of use to some.

[Edited By David Gaider: Friday, 12 July 11:06PM (GMT)]

Celowin’s Scripting Tutorial Lesson V - NonNPC Scripts
Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don’t know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

Other Resources

I’ve been getting a lot of requests for help on scripts lately. If I have time I’m glad to help
point people in the right direction, but I don’t always have the luxury of answering
everyone that asks. So, I’m going to take a little bit of time to try and explain where else
you can look to figure out what you need. Honestly, over 90% of the questions I see have
been asked before, and it is only a matter of finding where the answers have been placed.

Really, there are four main places that you should look for answers, in no particular
order:

• The Scripting FAQ (sticky thread in the scripting forum).
• The NWN Scripting Forum.
• The official campaign.
• The toolset itself.

Let’s take a brief look at each of these, and how to use them.

The Scripting FAQ

Well, they are called “frequently asked questions” for a reason. The documents that have
been compiled here answer many of the most confusing issues in scripting, and many

mailto:james.foxglove@verizon.net

easier issues that are common for people to want to know about. Really, if you have an
issue on something, it is a good idea to look here first. There may not be something that
specifically deals with what you need to know… but then, there might be.

Also, don’t be afraid to look at a document in the FAQ that doesn’t immediately seem
applicable to your problem. Odds are, everything in there is something you’ll want to do
at one time or another. The more you learn about NWScript, the more it starts to make
sense. Often, while reading about how to do something totally unrelated to a problem I’m
working on, I see something that can help me. It might be just a function that I wasn’t
aware of, or it might be a clever use of a variable that inspires me.

Because of the variety of different authors of the documents in the FAQ, some will be a
bit beyond your current level of understanding. If so, fine…. learn more, and come back
to them later. You might be surprised at how much you can pick up on even now, though.
Give it a try.

The NWN Scripting Forum

There is a constant stream of people asking questions, and there are many dedicated
people answering questions. As I was saying, odds are that any question you are likely to
have has been answered already.

How then to find the answer? Well, the search tool is probably a good place to start. It
isn’t perfectly reliable, but it can’t hurt to try.

If I don’t find what I’m looking for through the search, then I just start scanning the first
few pages of posts. Since the same questions are repeated so frequently, there is actually
a good chance that what you are looking for has been answered within the first three
pages.

If neither of those works, then, and only then, make a post asking for help. A quick note:
the more effort you put out to solve your problem on your own, the more effort people
are going to put out to help you. Let me give an example. (Any similarities to actual posts
made by people is intended in general, but not meant to make fun of any individuals.)

One person posts, and the entire content of the post is “How do u make a lever close a
door?”

Another person posts, and gives a detailed explanation of what they are trying to
accomplish. They describe the tags they have given to their door and to the lever. They
explain that they have tried attaching a script to the “OnActivate” of the lever, explain the
local variables they have set, and explain what they have attempted to do in order to get
the door to close.

I can’t speak for everyone, but I’m much more inclined to help out the second person.
Even putting aside my bias against the use of “u” as a pronoun, I don’t feel any particular

sympathy for the first. Maybe that person has spent 15 hours trying to get it to work…
but from what he has said, I don’t know that. It comes across as “I’m not willing to put
any effort into learning it, you do it for me.” The second person, on the other hand, I can
see is honestly giving it a try. It is easy to identify exactly where the problem is, and
because of all the detail, I might even be able to write the code out for the person.

One final note about getting help from the forum: it is polite, though not strictly
necessary, to give credit in your comments to the person who helped you fix your script.
Just something like:

// On user defined script: tm_guard_ud
// Has a guard growl a warning when it sees a pc wielding a weapon.
//
// Last updated: 7/11/02
// Written by The Great Gatsby
// Some debugging help from Celowin of the NWN Scripting Forum

People who just play through your module will likely never see such credit, but those
people that pick through your code will.

If you don’t know a person’s real name, the user name you know them by is fine. It is a
good idea, though, to put in a blurb as I did above about where that user name comes
from.

The Official Campaign

Over and over again, I see questions like “How do I do (mumble) like they did in
(mumble) part of the official campaign?” I have to hope that this type of question is from
a lack of knowledge of how to look at the official campaign modules, rather than
laziness.

So, here are the steps to making the campaign modules available for opening in the
toolset:

• Inside your main Neverwinter Nights directory, there is a subdirectory called
nwm. This is where the official campaign modules are stored.

• Copy the file or files you want to look at from there into the modules folder.
• Rename the files in the modules folder from .nwm to .mod (When you do this,

you won’t see the .mod in the final result. That is, when you take Chapter1.nwm
and rename it to Chapter1.mod, you will only see it show up as Chapter1)

• Right click on the renamed file, and go to “Properties.” Uncheck the “Read Only”
box, and then click ok.

• Now, whatever chapters you copied over can be opened in the toolset.

You can learn tons from seeing how BioWare did different things. Want to know how to
have an npc initiate a conversation? Look at Pavel from the Prelude. Want to know how
to summon in creatures to attack the pcs? Look at Aribeth’s conversation from the
Prelude. Want to know how to have an npc follow you until it sees a particular npc, then
head off? Look at the butler or maid from Chapter 1. And so on…. they pulled all sorts of
tricks in the campaign, all of them are now available for your perusal.

I personally go to the prelude first if I’m trying to figure something out… for the simple
reason that it is faster to load up into the toolset. Certainly, there are lots of tricks used
throughout the campaign that were not used in the prelude… but there is a lot of useful
information even in that first little introduction to the game.

Sometimes their code can be difficult to follow, particularly for complicated things.
However, if you can’t figure out how to modify their code, odds are it is a bit above your
current level of scripting. Work on something else, and come back to it.

Which actually, brings to mind something I’ve been meaning to mention for awhile.
Usually, when people are starting work on their modules, they right away want to jump to
the “cool part” which unfortunately is almost always the most complicated script. You
have to learn to walk before you can run, Grasshopper. Not every script in your module is
going to be complicated, start out with something easy, even if it seems boring. Work
your way up to the more difficult ones. I remember reading awhile ago about someone
who wanted his first script to involve six levers, twelve gems, a portal with multiple
destinations, and lots of other visual effects. What he was doing was certainly possible,
and not even all that difficult… once you know what you’re doing. For a first script,
though, it would be a logical nightmare.

The Toolset

It may seem a bit strange to think of the toolset as a way to learn about scripting.
Honestly, though, this is where I’ve learned most of what I know. Once you know the
basics of scripting, you can pull a lot of information out of the documentation in the
toolset, minimal as it may seem.

First off, notice when you are editing a script, there is a long list of functions over on the
right side. If you click on any one of those commands, you get a bit of information about
that command down at the bottom of the screen.

Since most of the functions are pretty logically named, you often just scan the list until
you find something that looks appropriate, and then look at it to see how it works.

Let’s take an example from the script we’re going to be looking at later in the lesson. I
want to teleport a pc to a different location. I don’t know off the top of my head what
function to call to do that, so I start scanning through the list of functions.

We want to move the pc to a location, so ActionMoveToLocation sounds promising.
However, we’ve used Move commands before, and it causes walking rather than a
teleport. Right nearby in the list, though, is ActionJumpToLocation, and I have never
seen my pcs doing any hopscotch in the game, so let’s take a look at that. I click on it
over on the right, and down below the following appears:

NWScript:

// The subject will jump to lLocation instantly (even between
areas).
// If lLocation is invalid, nothing will happen.
void ActionJumpToLocation(location lLocation)

The first two lines are comments, and tell us a little bit about the function we’re looking
at. The first line tells us that it is pretty much what we want, the second tells us something
special about the behavior. What is the third line, then?

Well, that third line is telling us important information about how to use that function in
the code. This really goes back to Lesson 1… the void tells us that there is no “output”
from this function – it does something in game, but doesn’t give us an answer of any
kind. Then comes the name of the function, we knew that already. Then, however, it tells
us what kind of inputs we need to pass to the function – we need to give it a location.

We can then hunt further through the function list to find other things that might help us.
First off, this is an “Action” command, and so would make the teleport part of the action
queue. If we want it to happen immediately, we need to find an alternative… what about
just JumpToLocation? What do you know, it is a command.

Next problem is how do we get a location to pass to the function? Most of the functions
that return an answer start with “Get” so let’s look at that section. Yep, there is a
GetLocation command. Again, we can click on it and get information on how to use it.

Hmmmm… the JumpToLocation command doesn’t take as an input what it is that you’re
trying to move. This one is a little bit tough to figure out, but I’ll let you look for a bit. If
you can’t find it, it will be in the final scripts down below.

So, you see, with a little bit of perseverance, and maybe a bit of intuition (which comes
with time) we can learn an awful lot about what commands to use.

Also, if you’re bored sometime, I recommend just looking through the list sometime and
clicking on random things that look interesting. Maybe you’ll find something that you
didn’t know about that will make your life easier.

Moving On

Ok, enough about places to learn things, let’s go ahead and make a script. Everything
we’ve done in previous lessons has all dealt with npc scripting, so let’s try something
different. Let’s do some placeable scripting, and some trigger scripting.

In general, no matter what you’re scripting for, it is pretty much the same. The “triggers”
for calling the script vary, and you have to be careful with what OBJECT_SELF refers to,
but the basic structure and commands are exactly the same.

In our test module, if you’ve been following along with what I’ve been doing, we have
two areas that aren’t connected in any way. We’ve just been painting our module start
point in whatever area as needed. While that is a great testing tool, it is boring. We could
make an area transition from one place to the other… boring, again. So, let's try
something a bit more interesting.

How about this: In one of the areas, we’ll make two levers, that start in the “off” position.
When both levers are moved to the “on” position, we’ll summon a portal which a pc can
step through to get to the other place.

Ok, step by step, here we go:

• Open the toolset, load up the module, and open the area you want to put your
portal (presumably the larger of the two areas).

• Put down two “Floor Levers” from the “Placeable Objects”, “Containers and
Levers” menu

• Give one the tag LEVER1, the other LEVER2
• Where you want the portal to appear, put a waypoint. Tag it TM_INWP
• Paint a trigger around that waypoint (Click places for segments, after you have it

pretty much enclosed, double click to close the polygon). Tag the Trigger
PORTTRIG

• Attach this script to the OnUsed handle for each lever (same script for both
levers). Save it as tm_lever_ou

NWScript:

// OnUsed script: tm_lever_ou
//
// This script sets up levers named LEVER1 and LEVER2.
// They both start deactivated. If both get turned on
simultaneously,
// a portal is summoned at the waypoint TM_INWP and the trigger
// PORTTRIG is turned on.
//
// Written by Celowin
// Last Modified: 7/12/02
//

void main()
{
int nUsed1=GetLocalInt(OBJECT_SELF, "LEVER_STATE");
int nUsed2;
//
// nUsed1 and nUsed2 are used to temporarily hold the states of
the two levers.
// 0 is off, 1 is on
// LEVER_STATE is the permanent holding spot for the variables.
// Each lever stores its own LEVER_STATE
//
if (nUsed1 == 1) // If the lever is set to on, set it to off.
 SetLocalInt(OBJECT_SELF, "LEVER_STATE", 0);
else // If the lever is set to off, set it
to on
 SetLocalInt(OBJECT_SELF, "LEVER_STATE", 1);
nUsed1 = GetLocalInt(GetObjectByTag("LEVER1"), "LEVER_STATE");
nUsed2 = GetLocalInt(GetObjectByTag("LEVER2"), "LEVER_STATE");
if ((nUsed1==1) && (nUsed2==1)) // Are both levers on?
 {
 // If so, create the portal, and tell the trigger to get
ready to port.
 object oPortalSpot=GetWaypointByTag("TM_INWP");

CreateObject(OBJECT_TYPE_PLACEABLE,"plc_portal",GetLocation(oPort
alSpot), TRUE);
 SetLocalInt(GetObjectByTag("PORTTRIG"), "READY", 1);
 }
}

There are things to discuss about this script, but for the most part I hope the comments
make it clear. I’ll hold off on explaining everything until the whole shebang has been set
up.

• Go now to the trigger that you painted.
• Open up the properties, and go to the scripts tab there.
• Put this script into the “OnEnter” tab. Save it as tm_portal_en

NWScript:

// OnEnter script: tm_portal_en
//
// If the portal has been turned on, and a pc enters, warp that
pc to
// the waypoint TM_OUTWP
//
// Written by Celowin
// Last Updated: 7/12/02

//
void main()
{
// Set up the temporary variables that we need.
//
object oPC=GetEnteringObject();
object oDest=GetWaypointByTag("TM_OUTWP");
int nReady=GetLocalInt(OBJECT_SELF, "READY");
//
// Check: Is it a pc and is the portal turned on?
// If so, cause the pc to jump to the exit.
if ((nReady==1) && (GetIsPC(oPC)))
 AssignCommand(oPC, JumpToLocation(GetLocation(oDest)));
}

• Almost done. Ok out of the trigger.
• Now, switch to the other area, where you want to be teleported to.
• Paint down a waypoint, and call it TM_OUTWP
• Save everything, and go out of the editor.
• Load it up, and test it out.

The portal script is really straightforward. The only thing worth mentioning is the
“AssignCommand”. This is another one of those things that once you find, you wonder
how you ever got by without it. Basically, it is used to make something else do an action.
We want the pc to do the JumpToLocation… so we assign the command to the pc. This
comes in handy all over the place.

The other script isn’t really that hard to parse through either. The key is just the storing of
the local variables to keep track of “on” and “off”. There are a few things that I think are
worth mentioning, though.

It is sort of bad form for me to use nUsed1 twice in the script. Once I use it as the state of
the current lever, whichever one it is. Later, I used it to mean the state of LEVER1 in
particular. Some programmers would whack me with a large stick and say that I should
use different variables for these. Why didn’t I? Well, just so I can raspberry the
programmers that would try to tell me what to do. Seriously, the two uses are close
enough to the same thing, and it is a simple enough script, that I felt there was no point in
putting in another temporary variable. For a longer script, I probably would.

The other thing worth mentioning is the CreateObject call. For this, we need to
understand the difference between “tags” and “blueprintresrefs”.

Objects that are in the game have tags. You can find already created things through their
tags. However, if something hasn’t been made yet it can’t have a tag. Imagine a physical

nametag… you can’t put a nametag on something that doesn’t exist yet.

Instead, we have to use a “blueprint”, a plan for making the thing. That is what the
“plc_portal” is… it is the blueprint reference for the portal object. (As a note, to find that
blueprint reference, I just temporarily painted a portal somewhere. I then looked under
the properties of that portal to find the blueprint.)

Other than that, I hope things are pretty clear. I tried to comment pretty extensively, so
you can follow what I did.

Further Exercises

Ok, here is where my background as a teacher comes out…. homework time! I can’t
force you to do this, but I think it is worthwhile for those of you trying to learn this stuff
to maybe take the time to extend what we’ve done.

So, try to do this: Right now, turning on both levers activates the portal. Fair enough. If
we turn one lever on then off, then turn the other lever on, no portal. Still reasonable.
However, if we activate both levers so the portal comes on, and then turn off one of the
levers, the portal still stays up. This doesn’t make as much sense. If you can, try to go
through and fix it so that the portal turns off again when you turn off either one of the
switches. Of course, it should then be possible to turn it back on again.

Another extension: Right now, our portal is “one way.” We go in one place, and come
out another. Try to make it two way.

I’d rate the first one as moderately challenging for someone that has followed the lessons
so far, the second one as easy.

At any rate, good luck, and I hope to have another lesson out soon.

Celowin's Scripting Tutorial Lesson VI - Loops
Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don't know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

A Word of Caution

It is with a bit of trepidation that I write and post this installment in my lesson sequence.
Everything up to this point I consider to be "basic scripting." The techniques used in the
past five lessons are going to end up being used in almost every script that you write. In
this lesson, though, I'm going to talk about an intermediate concept. It is still a very
important idea, it is just that you won't be using it nearly as often as the previous material.

That isn't the reason why I'm a bit hesitant though... the real reason why I worry is that
this is the first lesson where what I am discussing is "dangerous." Certainly, it has been
easy to make mistakes with some of the things we have talked about. If there has been a
problem with a script, though, it is just that the script wouldn't work as intended. With
loops, though, there is the potential to really screw things up.

Luckily, BioWare has some controls put in to keep things from getting too far out of
hand. Still, you always need to be very careful to watch out for some of the problems that
I'll be discussing.

What is a Loop?

In simplest terms, a loop is a way of getting part of your script to run multiple times. It
goes through it once, then "checks" to see if it is supposed to run again. If so, it "loops"
through and repeats itself. It does this over and over again, until things have changed to

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

the point where it isn't supposed to happen any more.

The key in writing loops is then mainly to know when to use them, and how to set up the
"check" to make certain the loop stops at the right time. The check is particularly
important – this is the danger I alluded to earlier. If your check is written wrong, there is
the potential to never "break out" of the loop, and the same instructions will happen over
and over until an error occurs.

There are two types of loops: the "for loop" and the "while loop." The first question that
should pop into your head is "How do I know when to use each type?" I wish there were
an easy, 100% accurate rule that I could give. The fact is, though, that knowing what type
of loop to use is something that comes with experience. In fact, everything that can be
done with a for loop could also be done with a while loop, which compounds the
confusion – why have two types, when one would suffice?

There is, however, a general rule of thumb that we can use. The rule isn't perfect, but it
covers most uses. If you are going to do something a certain number of times, you want
to use a for loop. If you don't have any way of knowing how many times you are going to
do something, you'll use a while loop.

Let's take a look at each type of loop separately.

For Loops

The key to a for loop is that you have an "index" variable that you use to keep track of
going through the loops.

The basic format is something like this:

int nIndex;
for (nIndex=1; nIndex <= 7; nIndex++)
{
do_things_here;
}

This is a little bit complicated, let's look at each part specifically.

First off, we have to define the index variable first. (C coders are used to defining the
variable inside the loop definition, but for NWScript it has to be declared first.) We don't
have to give it a starting value, but we have to set up the variable.

There are three things inside the parentheses. The first one (nIndex=1) is the
initialization clause we've set up the variable already, we just give it a starting value here.

The second part (nIndex <= 7) is called the conditional. This is the part that determines
when the loop actually "runs." As long as this condition is met, the loop continues to run.

It is checked each time the loop tries to start again, and as soon as it is no longer true, the
loop "terminates." So if after some loop, nIndex had a value of 8, the loop would stop
running.

The final part (nIndex++) is an action that the code does at the end of each loop. I
briefly mentioned the ++ part in a previous lesson... it increments the variable nIndex by
1. We could just as easily put in this third slot something like nIndex=nIndex+1.
However, because incrementing by 1 is by far the most common "third clause" to the for
statement, most experienced scripters prefer to use the ++. It takes a bit of getting used to,
but it really does make the code look cleaner.

Putting all this together, what happens with the loop up there? nIndex starts out as 1. 1 is
less than or equal to 7, so it performs the do_things_here stuff. Then the first iteration of
the loop is over, so that third clause kicks in, and nIndex is incremented to 2.

It then goes back to the conditional... 2 is still less than or equal to 7, so the
do_things_here runs again. The second iteration being over, nIndex is bumped up to 3. It
goes through this a few more times, nIndex going through 4, 5, 6, 7 and then ending up as
8. At this point, when it checks, nIndex is now greater than 7, so the loop terminates.

Example For Loop

All this is pretty confusing stuff, so let's take a look at a concrete example. Let's say we
want to punish a character for hacking open chests at random. So, we'll put in a chest that
will summon 5 zombies and 5 skeletons around the character when it is destroyed. We
could call the CreateObject command 10 different times, but instead it makes a lot more
sense to use a loop.

(Note: I'm assuming that you have a pc available for testing that can survive that many
zombies and skeletons. If you don't, you may want to change it so it summons chickens
and commoners instead.)

• Place a chest into your module.
• On the "Lock" tab, set it to locked, and the difficulty to 100.
• On the scripts tab, the "OnDeath" handle, put the following script:

NWScript:

// On Death Script: tm_chest_dt
//
// This script summons 5 zombies and 5 skeletons
// near the person that destroyed the chest.
//
// Written by Celowin

// Last Updated: 7/13/02
//
void main()
{
// Initialization: Get the location of the pc that destroyed the
chest,
// Set up for the loop.
//
object oPC=GetLastKiller();
int nUndeadIndex;
location lSpawn=GetLocation(oPC);
//
// Loop 5 times
//
for (nUndeadIndex=1; nUndeadIndex<=5; nUndeadIndex++)
 {
 // Each loop, create a zombie and a skeleton at the PC's
location
 //
 CreateObject(OBJECT_TYPE_CREATURE, "nw_zombie01", lSpawn,
TRUE);
 CreateObject(OBJECT_TYPE_CREATURE, "nw_skeleton", lSpawn,
TRUE);
 }
}

Go ahead and test it out. Destroy the chest, and suddenly your character is surrounded by
an undead horde. Easy enough?.

Another thing to note is that in any of the three parts of the for loop initialization, we
aren't restricted to just the one variable. Usually the only place you'll put something else
in is the second one, but if desired you could alter the first or third as well.

Let's just modify that last script a tiny bit. Instead of summoning 5 each of skeletons and
zombies, let's only summon zombies... but we'll summon a number equal to the level of
the pc.

I won't write out the entire script, since most of it is the same. Here is what we need to
change:

Under the line that starts "object oPC", add the line:

int nPCLevel = GetLevelByPosition(1,oPC) +
GetLevelByPosition(2,oPC) + GetLevelByPosition(3,oPC);

(You may want to break that up onto separate lines. As long as you only have the
semicolon at the end, you're fine.)

Then, in the loop setup, the second part becomes nUndeadIndex <= nPCLevel;

Comment out the summon skeleton line, update the comments if you wish, and you're set
to go.

Test it out, and you should be set. Check it out with a couple of different characters, and
see how the number of zombies changes.

Wrap up on For Loops

Really, then, the key to using for loops is understanding the three parts. The initialization
is run once, at the start of the process. The conditional is checked at the start of each loop,
if it is true then the loop cycles, if not then the loop terminates. The third part is done at
the end of each loop.

I can't stress enough that you have to be certain that your loop will end! What would
happen if we had set our conditional to nUndeadIndex > 0? No matter how many times
would increment the variable, this would always be true... so the script would summon
zombie after zombie until an error occurred. It might be fun to see how many zombies it
could make, but errors should be avoided at all costs.

So, always, always double check your logic when you're making a loop. Make certain
that your loop will in fact terminate at some point.

On to While Loops

While loops are in many ways simpler to understand. However, I think they are harder to
use, since there is less certainty about them. I mentioned before that you usually use a
while loop when you don't know how many times you'll have to run the loop. That is a
little bit confusing, so let me try to explain.

Suppose you have a bunch of hellhounds running around in an area. You want it so that
when a certain altar is destroyed, all the hellhounds will suddenly die. The problem is,
you can't be certain how many hellhounds there are.... The pcs may have killed a few. For
that matter, maybe the altar will summon hellhounds until it is destroyed, so there could
be lots around.

So, we really have no idea how many times we'll have to do a "kill hellhound" command.
It might be none, it might be 50. There is just no way to tell up front.

That is where the while loop comes in. Basically, we want to say "keep killing hellhounds
until none are left", or in other words "while there is a hellhound still around, keep killing
them one after the other."

The basic format for a while loop is like this:

while (condition)

{
do_this_stuff;
}

It is really fairly straightforward. When the script gets to the while loop, it checks the
condition. If it is true, it does the inside stuff, then checks the condition again. If it is still
true, it repeats. It keeps doing this until the condition isn't true.

Simple enough, right? Really, in a lot of ways, it is like the for loop. In fact, you really
have the same three parts... it is just that the initialization and the update you have to be
sure to put in yourself.

We'll get to the hellhounds in a minute, first let's attack something a little bit simpler. It is
a common thing when completing a quest to give the pcs a little bit of experience for
their trouble. If you only have one pc, it is a piece of cake. But what if you are running a
multiplayer game? How do you make sure each pc gets their reward?

If you didn't answer "with a while loop" give yourself twenty whacks with a wet noodle.

We have a few things floating around our module, if you've been following the lessons
all along. (If you haven't, just make sure you have a ring with tag PASSRING
somewhere, and any npc.)

Pick one of the npcs we have floating around, and we'll give it a simple little
conversation: (I'm going to assume you know how to use the conversation editor to do
this.)

(Start) Got ring?
(PC Response 1) No.
- End dialogue.
(PC Response 2) Yes.
- (NPC Response) Thanks.

(I'd actually make these a bit more verbose than this. I'll leave that to your own personal
writing skills.)

For PC Response 2, just use the Script Wizard on the "Appears When" tab. Say that you
want it to happen when "Item is in Inventory" and then add the tag PASSRING to the list.

For the NPC Response, on the "Actions Taken" tab, put this script:

NWScript:

// Conversation Script: tm_guard_c1
// Takes the ring from the speaking player,
// And awards 50 xp to every pc.
//

void main()
{
object oPC=GetFirstPC();
DestroyObject(GetObjectByTag("PASSRING"));
//
while (oPC != OBJECT_INVALID)
 {
 GiveXPToCreature(oPC, 50);
 oPC=GetNextPC();
 }
}

Save the script, save the conversation, save the module, then go test it out. You'll have to
have a friend help you out to really test it properly, but you can see the basics just by
running it yourself.

Notice that ignoring the DestroyObject command, really what we have it just the basic
steps of the for loop. We initialize (oPC = GetFirstPC()), we condition (oPC !=
OBJECT_INVALID) and we update our variable (oPC = GetNextPC()).

So, this will keep looping, giving 50 xp to each pc, until we come up with
OBJECT_INVALID, that is, until there are no more pcs.

Once again, when writing a while loop, be absolutely certain that the loop will eventually
terminate. Infinite loops are bad.

Exercises

Hmmmm.... I was going to go through and do the hellhound script, but the more I think
about it, the less I think I have to. In fact, basically every part of the script has been used
somewhere in this lesson.... What handle to use, what commands go in the script,
everything. So, I'll leave that to you... drop an altar and some hellhounds into your
module, and see if you can make it so that destroying the altar will destroy all the
hellhounds. (Difficulty = moderate. You can also make it so that the altar will spawn
hellhounds until it is destroyed.... Difficulty remains moderate if you just keep spawning
them, difficulty ups to advanced if you make sure that the number of hellhounds never
gets above a certain level.)

Another exercise to try: Make a trigger, that when entered will summon a number of
creatures (whatever kind you like) equal to twice the number of pcs in the module. (I'll
rate this one as advanced, but barely so.)

Closing

I've been getting less and less feedback on these tutorials as I've been going on? Are
people still finding them useful? Please, please let me know if you're still learning from
them. I don't get paid for this, the only satisfaction I get is from knowing that I'm helping

others to make cool modules.

In fact, probably the best praise that you could give me is to show me what you've
learned. Use the ideas I've covered, write something cool, and tell me about what you did.
After lesson four, someone showed me an extension of the dart player script that just
floored me. I really felt good about myself that I had helped that person get started.

At any rate, just drop me a line to let me know how well things are going. If nothing else,
let me know if you've been able to figure out the exercises I've been dropping in.

As a reminder, you can always contact me at james.foxglove@verizon.net

mailto:james.foxglove@verizon.net

Celowin's Scripting Tutorial Lesson VII – Scripting for
Items

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don't know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

Introduction

I've been seeing a lot of questions like "How do I attach a script to an item?"

Well, the short answer is "you can't." That isn't a very satisfying response, though, so let
me explain further. For whatever reason (my guess has to do with balance on exported
characters) BioWare has not allowed any way to directly put a script to an item.
However, you can still script actions for an item, but you have to do it in a manner that
seems somewhat roundabout.

When editing an item, under the "cast spell" option, there are two extra choices: Unique
Power, and Unique Power Self Only. By using these two things, we can add all sorts of
special abilities, if we go about it right. The "Unique Power Self Only" option is for items
that are activated and go off, the plain "Unique Power" option is for abilities that need to
be targeted.

If we can't attach any scripts to the items, though, how can we make them do anything?
Well, go to Edit -> Module Properties -> Events tab, and you will see a place for
attaching scripts that apply to the entire module. One of the options is "OnActivateItem",
and this is where all the fun happens.

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

There are four functions that we will need to understand in order to script for items:

GetItemActivated – This returns the item that was used.

GetItemActivatedTarget – If the item was targeted on an object, this returns it.
(Remember, of course, that creatures are objects.)

GetItemActivatedTargetLocation – If the item was targeted on the ground, this returns
the location. If the item was targeted on an object, this returns the location of that object.

GetItemActivator – This returns the pc that activated the item.

These descriptions are very brief, but we'll be seeing each one in action through our
examples.

Example 1: Flawed Healing Amulet

Let's make an amulet that can be used to heal the pc. To make it a bit more interesting,
though, let's say that it isn't a perfect heal – it heals half of the damage that the pc has
suffered, and to keep it from being too overpowered, we'll restrict it to one use per day.

First, create the base item:

• Open up the item wizard.
• Select "Amulet" as the type.
• Give it the name "Cracked Amulet"
• Check the "magical" box, Item Level 1-5, Low quality
• On the next screen, put it on the palette under Miscellaneous -> Jewelry ->

Amulet
• Finally, check the "Launch Item Properties" box, and finish.
• On the General tab, change the tag to HEALNECK
• On the Properties tab, remove whatever abilities it currently has
• Add in the power Cast Spell -> Unique Power Self Only
• Select that ability on the right, then underneath click on "Edit Property"
• Click on "1 Use/Day", Select, then OK
• For ease of testing, check the Identified box.
• OK out of the item properties.

Now, for the scripting. Go to Edit -> Module Properties -> Events, and edit the
OnActivateItem script. Put in the following script:

NWScript:
// Module OnActivateItem Script: tm_activate
//
// This script handles all the unique item properties for the
module.
// Currently scripted items:
// Cracked Amulet
//
// Written By: Celowin
// Last Updated: 7/15/02
//
void main()
{
// General Initialization: Find what item was used
object oUsed=GetItemActivated();
//
// The following section is for the Cracked Amulet
// The amulet heals half the pcs damage when used.
if (GetTag(oUsed)== "HEALNECK")
 {
 // Get the pc, first.
 object oPC=GetItemActivator();
 //
 // Find out how much damage was taken, we're healing half of
that.
 int nDamageTaken = GetMaxHitPoints(oPC)-
GetCurrentHitPoints(oPC);
 int nHealing = FloatToInt(IntToFloat(nDamageTaken)/2);
 //
 // Perform the healing, and a little visual effect to show it
working.
 effect eHeal = EffectHeal(nHealing);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal, oPC);
 effect eVisual = EffectVisualEffect(VFX_FNF_SMOKE_PUFF);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eVisual, oPC,
1.0);
 }
}

Save the script, and go test it out. (Don't forget to drop a copy of the amulet into your
module, if you haven't done so yet.)

There are two things about this particular script that bear mentioning. The first is the line:

int nHealing = FloatToInt (IntToFloat(nDamageTaken) / 2);

Now, the basic idea here is pretty simple: we want to cut the damage taken in half in
order to get how much we heal. What is all this IntToFloat and FloatToInt stuff, then?
Well, remember that an int is a whole number. There is no decimal allowed there. When
we divide two numbers, though, odds are we are going to get a decimal part. So, using an
integer in a division is always suspect.

A "float" is a number with a decimal part. So, since we're doing a division, the first thing
we want to do is convert the integer nDamageTaken into a float... hence the IntToFloat.
Then, since we have a decimal number, the division is allowed.

But then, after the division occurs, we need our final result to be an integer... so we do the
reverse, FloatToInt. This basically "chops off" the decimal part of the number, and leaves
us with the whole number part.

Let's look at an example of the math: Say a pc has taken 17 points of damage. We change
that to a float, so it becomes 17.0. Then we divide by 2, it becomes 8.5. We change it
back to an integer, the decimal part is dropped, and we're left with 8. So, we would be
healing 8 points of damage.

The second part of the script worth mentioning is all the "Effect" stuff down at the
bottom. Pretty much any time you are going to directly affect an object in any way, you
need to use effects. Healing, visuals, special abilities, knockdowns.... all these are effects
of one kind or another.

I'm doing two effects here... one is the heal, and the other is a visual of smoke around the
player. (Since the amulet is supposed to be not working quite properly, I thought the
smoke was appropriate.) Each effect has two parts... defining the effect, and then
applying it to the pc.

For the heal, we first have to tell it how much to heal. That is handled in the line:

effect eHeal = EffectHeal(nHealing);

Then, we heal the pc.

ApplyEffectToObject (DURATION_TYPE_INSTANT , eHeal, oPC);

The DURATION_TYPE_INSTANT says that it happens and then is over. eHeal is the
effect we defined, then oPC is the target of the effect.

The second one is similar. We define the visual effect of a smoke puff, then apply it to
the pc. This one is going to run for a few seconds, so it is _TEMPORARY for the
duration type. We again say what effect it is, and the target. The final number is the
duration.

There are so many different possible effects that it is often really hard to find the one you
want. All of them are applied in basically the same manner, though.

Example Two: Alfred's Ring

For those of you just interested in scripting, skip this paragraph. I'm going to get maudlin
and remember one of my old friends who was a fantastic D&D player and DM. At one

point he was in humorous campaign that unfortunately I was not a part of, though I heard
plenty of stories. His character was "Alfred the were-chicken." I don't remember the
back-story of the character, but he had all the usual lycanthropic powers... shape shifting
under a full moon, immunity to non-silver weapons, and of course, control over
appropriate animals. Well, if anyone has a copy of the first edition AD&D players
handbook, you can look up the cost of a chicken under livestock... 1 copper piece. There
were 200 copper pieces to a gold. So, for 2 gold, he had an army of 400 chickens
following him around. Sure, an individual chicken can't do much... but if you're mobbed
by 400 of them at once, all clawing and pecking.... <shudder>. At any rate, this item is in
remembrance of Alfred the were-chicken.

The way this ring will work is to summon a chicken. If we click on the ground, it will just
create the chicken. If we click on a creature, the chicken will attack that creature. (Well,
for a moment... chickens aren't known for their valor in battle.)

Go ahead and create the item. It is basically the same process as for the first item, so I
won't go through it step by step. Give it a name of Alfred's Ring, a tag of CHCKRING,
and unlimited uses per day. (If it were a useful creature, that would be unbalancing. But a
chicken?)

Now, to make this item work, we have to add to the same script. If we still want the
healing ring to work, we have to leave all the former stuff in. We just put in another
section to check for the new item we're scripting for.

NWScript:

//
// The following section is for Alfred's Ring
// Summons a chicken, which will attack the target if a creature
if (GetTag(oUsed) == "CHCKRING")
 {
 // Get where the ring was used
 location lTarget=GetItemActivatedTargetLocation();
 // Set up the "gate in" effect
 effect eChickIn=EffectVisualEffect(VFX_FNF_SUMMON_MONSTER_3);
 // Summon the chicken
 object
oNewChicken=CreateObject(OBJECT_TYPE_CREATURE,"nw_chicken",
lTarget, TRUE);
 // If the ring was targeted on a creature, the chicken will
be summoned offset a bit.
 // Update the location, then apply the effect.
 lTarget=GetLocation(oNewChicken);
 ApplyEffectAtLocation(DURATION_TYPE_TEMPORARY, eChickIn,
lTarget, 1.5);
 //
 // Finally, if check to see if an object was targeted. If
so, attack it.
 object oEnemy=GetItemActivatedTarget();
 if (GetIsObjectValid(oEnemy))
 AssignCommand(oNewChicken, ActionAttack(oEnemy));

 }

Also, update your header comments. (I know, it is boring to update comments every time,
but it is a really good practice to get into.)

Go ahead, save, and test it out. (Note when testing: the chicken won't actually attack
anything that it is friendly with... so you might need to play with factions a bit to get it to
work. Once you do, it is sort of funny... the chicken will attack, then get scared and run
away.)

Some Cautionary Notes

Although I'm sure people are brimming with ideas of neat items you can script, you really
should limit yourself to only a few in a module. One reason is stylistic: the more such
items you put in, the less impact they have on a person.

Another reason is for efficiency... since all the effects get added to the one script, that
script can get huge if you put in too many items.

The other warning about items is that you need to remember that they won't work in
another module. You can certainly cut and paste your OnActivateItem script to other
modules, but it won't happen automatically.

For these reasons, it is common to restrict unique item powers to items needed for the
plot. You are not forced into it, but it is something that you may want to consider.

Exercises

I would imagine that people have their own ideas on how to use this, but if you want
some practice here are a few things to try:

1. Make two altars in different places. Praying at one of these altars will set it to be your
recall point. Then, using an item will teleport you to that altar. (Moderate)

2. If your pc goes overboard with Alfred's ring, too many chickens might burden your
system. Modify it so that the chicken "unsummons" after a certain amount of time. (Easy
if you find the right command.)

3. Create a charged wand that will heal the target, but take 100 xp away from the user.
(Moderate, or Difficult if you put in a beam effect for the wand.)

Anyway, go have fun with it!

Celowin’s Scripting Tutorial Lesson VIII - Functions
Functions

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don’t know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

Introduction

This lesson is going to be a difficult one, and I’m not even going to really be scratching
the surface of the topic. Ever since lesson one, we’ve been using functions that have been
written by BioWare. This time, we’re going to start to learn how to write our own
functions.

Don’t worry if as this lesson goes on, you don’t understand everything that I say. This
stuff is never learned in one sitting, and in fact takes a lot of practice before it makes
sense. If you feel you’re getting over your head, put it aside for a bit, go do something
else, and come back to it later.

A bit of warning before we start. Even though we are going to be writing functions, they
will only be able to be used “locally.” That is, imagine we are writing a script for a
particular handle, say the OnPerception for an npc. We write a function to use in that
script. We can use it in our “main” for that script, but we can’t use it anywhere else. We
couldn’t use it for any other handle on that npc, nor could we use it for a different
OnPerception script.

Yes, this limits us a lot as to what we can do with the functions we write. At the same
time, it still opens up a lot of possibilities. And fear not, in a future lesson I will explain

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

how to write more generically useful functions, but we have to take things one step at a
time.

Function Declaration

Every function will start with a line something like this:

void GateIn(string sBluePrint, location lGate)

It is a brief line, but there are a lot of complicated concepts tied up into it.

The first part, “void” tells us what the output for the function will be. So, in this case, the
output is going to be an integer. All the other data types we have been using could go
here: int, float, object, event, etc. The most commonly used one will be void, and for this
lesson it will be the only one that we deal with.

The next part, “GateIn” names the function. Once we have it defined, we can call the
function using this name, just like all the BioWare defined functions. (Though again, we
must remember the restriction that we can only call our function in the script we are
writing it for.)

The part inside the parentheses is the most difficult part to understand… here we are
setting up the inputs to our function. (The technical term for these is “parameters,” but
you probably don’t need to remember that.) We are saying that we are going to have two
inputs into our function… one string, and one location.

So far, so good. Now for the confusing part. Before we can actually write the function,
we need to understand what will happen when the function is called. (Right away, that
seems backwards, that we need to understand the call of the function before we write it,
but bear with me a moment.) Presumably, we are writing a function that will do
something with those inputs, otherwise we wouldn’t need them.

Suppose, then, that somewhere in our script, we call the function like this:

GateIn(“nw_fireelder”, lSummonPoint);

Now, then, “nw_fireelder” is our first input, a string. Effectively, the first thing our
function does is set sBluePrint equal to “nw_fireelder”. Anywhere in our function, we
can use the variable sBluePrint to stand for this.

The same thing for our second input. lGate is set to whatever location lSummonPoint is
holding.

Ok, let’s look at the whole function now.

NWScript:
void GateIn(string sBluePrint, location lGate)
// This function summons the creature with blueprintresref given
by sBluePrint
// at the location lGate
// Then, it has the summoned creature attack the closest pc to
the object that
// calls this function.
{
// Creates the creature
object oNewCreature=CreateObject(OBJECT_TYPE_CREATURE,
sBluePrint, lGate);
// Find the closest pc
object oPC=GetNearestCreature(CREATURE_TYPE_PLAYER_CHAR,
PLAYER_CHAR_IS_PC, OBJECT_SELF);
// Cause the creature to attack the pc
AssignCommand(oNewCreature, ActionAttack(oPC));
}

Note that if you type this up and try to compile it, you will get an error message:

ERROR: NO FUNCTION MAIN() IN SCRIPT

By itself, a function isn’t a script. You still need your main, but for now I just want to
look at the function by itself.

Probably the most important line is the first one, where we create the object. We are just
using the same old CreateObject routine we’ve used many times before, but we are
passing our inputs to it. Whatever inputs are given to GateIn when it is called, are then
passed along to the CreateObject function.

It seems confusing, but it is here that the real power comes in. We can call the GateIn
command multiple times, passing it different inputs, and it will summon the different
creatures.

The next line, starting object oPC= is long, but mainly it is just because of the things we
have to tell it. That whole line is just saying “find the nearest pc to OBJECT_SELF.” We
don’t know what OBJECT_SELF is at the moment, because we don’t know what object
is actually calling the GateIn function.

Finally, then, we tell the new creature to attack the pc we just found. Nothing major there.

Let’s Try it Out

I’m going to write a fairly complicated script using the function I just showed. We could
certainly do something a lot easier than this, but I want to do an example where we can
see why we’d want to use a function.

• Start up the toolset.
• First, use the item wizard to create a Miscellaneous Medium item.
• Give it the name Sorcerer’s Skull
• Put it under Plot Items on the palette
• Finish the wizard, and edit the properties
• Give it the tag ALTSKULL
• Change the appearance to iit_midmisc_021
• OK out.
• Paint a waypoint, tag it ALTSUMWP
• Place an altar nearby, edit the properties.
• Tag the altar with SUMMALTR
• Check the “usable” and “has inventory” boxes.
• Open the altar’s inventory, put in a copy of the skull we just made.
• Ok out of the inventory, go to the scripts.
• In the OnDisturbed handle, put the following script:

NWScript:

// OnDisturbedScript: tm_summaltr_ds
//
// This script gates in one of 10 random creatures
// when a skull ALTSKULL is removed from the altar.
// The creature is gated in at the waypoint
// ALTSUMWP
//
// Written by Celowin
// Last Updated: 7/16/02
//
void GateIn(string sBluePrint, location lGate)
// This function summons the creature with blueprintresref given
by sBluePrint
// at the location lGate
// Then, it has the summoned creature attack the closest pc to
the object that
// calls this function.
{
// Creates the creature
object oNewCreature=CreateObject(OBJECT_TYPE_CREATURE,
sBluePrint, lGate);
// Find the closest pc
object oPC=GetNearestCreature(CREATURE_TYPE_PLAYER_CHAR,
PLAYER_CHAR_IS_PC, OBJECT_SELF);
// Cause the creature to attack the pc
AssignCommand(oNewCreature, ActionAttack(oPC));
} // end function GateIn
//
// Here is our main function:
void main()
{
// If the skull is in the altar, we don’t care, nothing will

happen.
// Note that OBJECT_SELF refers to the altar
if (GetItemPossessor(GetObjectByTag("ALTSKULL")) != OBJECT_SELF)
 {
 // Find the summon spot, via the waypoint.
 location
lSummonPoint=GetLocation(GetWaypointByTag("ALTSUMWP"));
 // Create the visual effect for the gate.
 effect eGate=EffectVisualEffect(VFX_FNF_SUMMON_GATE);
 ApplyEffectAtLocation(DURATION_TYPE_TEMPORARY, eGate,
lSummonPoint, 3.0);
 // Randomize what creature is being summoned.
 int nCreature=d10();
 switch(nCreature)
 {
 case 1: // Summon a polar bear.
 DelayCommand(3.0,GateIn("nw_bearpolar", lSummonPoint));
 break;
 case 2: // Summon a cow.
 DelayCommand(3.0,GateIn("nw_cow", lSummonPoint));
 break;
 case 3: // Summon a bone golem.
 DelayCommand(3.0,GateIn("nw_golbone", lSummonPoint));
 break;
 case 4: // Summon an elder fire elemental.
 DelayCommand(3.0,GateIn("nw_fireelder", lSummonPoint));
 break;
 case 5: // Summon an ogre high mage
 DelayCommand(3.0,GateIn("nw_ogremageboss", lSummonPoint));
 break;
 case 6: // Summon a yuan ti mage
 DelayCommand(3.0,GateIn("nw_yuan_ti002", lSummonPoint));
 break;
 case 7: // Summon a spitting fire beetle
 DelayCommand(3.0,GateIn("nw_btlfire02", lSummonPoint));
 break;
 case 8: // Summon a Kreshar
 DelayCommand(3.0,GateIn("nw_kreshar", lSummonPoint));
 break;
 case 9: // Summon a werecat, human form
 DelayCommand(3.0,GateIn("nw_werecat001", lSummonPoint));
 break;
 case 10: // Summon a high lich
 DelayCommand(3.0,GateIn("nw_lichboss", lSummonPoint));
 break;
 } // end switch
 } // end if
} // end main

Save everything, and go test it. When you remove the skull from the altar, a random one
of the 10 creatures will gate in and attack (well, the cow won’t attack, but the others will).

As long as it is, our main function really isn’t all that complicated. First, we check to see
who has the skull… if it is anything but the altar, we go forward.

We create a gate visual effect at the waypoint. This is just like the effects we did last
lesson. Then, we get a random number from 1 to 10, and call our gate in function to
summon the creature.

Now that we have this example in front of us, let’s discuss why we wanted to use a
function here. There are actually two reasons… one that is pretty straightforward to
understand, and another that is a bit more complicated.

Let’s discuss the easy one first. Basically, every time we call the GateIn function, we are
saving ourselves from writing out three lines of script. By just calling the GateIn
function, we are summoning the creature, finding the target, and attacking the pc all in
one. Since we have 10 different cases, we’ve saved ourselves about 20 lines in our script,
not counting comments. (And given how ugly that function was to find the pc, I’m glad
not to have to have it in my script repeatedly.)

The second reason is a bit tougher to understand… but basically, we had to use a function
in this case. We wanted to delay the summon until the gate was formed, so that the fire
effect would mask the appearance of the creature. Thus the need for the DelayCommand.
However, we can only DelayCommand things that have an output of “void”, and the
CreateObject command returns an object. If you try to do a DelayCommand for a
CreateObject call, it won’t compile. By putting the CreateObject into a separate function,
that did return void, we get around that restriction.

Cleanup

I think this lesson is a bit too complicated to expect you to be writing your own functions
just yet, but I’ll have you fix the previous script a bit.

The way it is now: If the skull is in the altar, everything is peachy. You can add items to
the altar and remove them, as long as the skull remains. As soon as you remove the skull,
a creature is gated in. All this is fine.

However, what if you continue to play with the altar? If you hold onto the skull, and put
any other item into the altar, it will gate in another creature! Remove that new item, and it
gates in another! This may be what you want, but probably not.

So, fix it so that only when the skull is removed will the creature be summoned. You
actually don’t have to change the function at all, you just need to play around with the
conditional for your main.

Example 2: Removing Plot Items

A certain sick, twisted DM (oh wait, that was me) once designed a surreal dream
sequence for his pcs. Talking penguins, nonsequiturs, bizarre puzzles, the works.
Eventually, though, the pcs woke up. <sniff> In pen and paper, it is easy to just get rid of

all the items the players picked up in the dream world. But how about in NWN?

Well, it takes a bit of planning, but it can be done. First off, I named all my dream world
items with similar tags. All plot items were DREAMITM, all weapons were
DREAMWPN, all armor was DREAMARM, and the key (there was only 1) was
DREAMKEY.

Then, to the dream world OnExit handle, I attached this script:

NWScript:

// On Exit Area script: tm_area002_ex
//
// This removes all items with tag DREAMITM, DREAMWPN,
// DREAMARM, or DREAMKEY from the exiting pc.
//
// Written by Celowin
// Last updated: 7/16/02
//
void StripItems(object oStrippee, string sTag)
// This function strips all items with tag
// sTag from the object oStrippee
{
// Initialize: Get the first inventory item
object oCurrentItem=GetFirstItemInInventory(oStrippee);
// Loop through all items in inventory
while (oCurrentItem != OBJECT_INVALID)
 {
 if (GetTag(oCurrentItem)==sTag)
 DestroyObject(oCurrentItem); // Destroy items with correct
tag
 oCurrentItem=GetNextItemInInventory(oStrippee);
 } // end while
} // end StripItems function
//
//
void main()
{
// Start main script
// First, get the one exiting
object oPC=GetExitingObject();
if (GetIsPC(oPC)) // If it is a pc, strip the items
 {
 StripItems(oPC, "DREAMITM"); // Generic dream items
 StripItems(oPC, "DREAMWPN"); // Dream weapons
 StripItems(oPC, "DREAMARM"); // Dream armor
 StripItems(oPC, "DREAMKEY"); // Dream key
 } // end if
} // end main

(Note, there is actually a better way of doing this with some string manipulation… this
version is really inefficient, since it loops through the pc inventory four times. It works,

though, and since it will only be run once per pc if you design the module right, it isn’t a
big deal.)

You can test this if you want. Create and drop a few DREAM*** items into your module,
attach the script to one of the areas’ on enter scripts, and play around with it. Also, for
you cruel dms, this can easily be modified to remove every item from a player…

Wrap Up

I’ve just barely scratched the surface of functions here. We can write functions to
calculate things for us, we can create libraries of functions, we can use functions to
drastically reduce the complexity of some scripts. Because of the power of functions,
though, it is difficult to cover everything at once.

For the most part, the feedback I’ve gotten from people has been positive. There is only
one minor complaint that comes up repeatedly, something like this: “I can follow what
you do, and you explain yourself well. So, I can see the how and the why. But I have a
tough time figuring out the when. I never know when I should use one of the tools you
have shown, and when I should do something else.”

I try to explain that, as well, but the problem is that it is something that comes with time.
After you’ve looked at enough scripts, you start to develop an intuition about when to use
a certain technique. This isn’t to say that it is easy… even once I know what I’m doing, I
often bang my head against the keyboard for hours to get a complex script to work.

So, for functions, what is the “general rule” on when to use them? I’d say, look at what
you’re doing. If you find yourself writing the same things over and over, odds are that
you want to use a function to simplify it. Even if it is only a few lines that you find
yourself repeating, your code will end up much easier to understand if you write a
function to encapsulate those lines.

The Future

I’m really starting to run out of ideas for these lessons. I’ve really covered all the
“basics,” and I’m actually starting to touch on some pretty advanced concepts. Sure, there
are little details here and there that I’ve glossed over, things that I’ve omitted, but I would
think at this point that you should be able to look at almost any script and say “Hey, I
know what that does.” Maybe you couldn’t write it yourself from scratch, but you should
be able to dissect it and figure out what it does.

I certainly should talk a little bit about “include” statements, and writing your own
function libraries, but I don’t think that will be a very complicated lesson.

So, unless I’m struck with a sudden inspiration, I think this series will be ending around
the 10th tutorial – at least in this form. I have an idea for a “follow-up” series, that will
take a different approach. I’ll give more details on that after I hammer out a few details.

Celowin’s Scripting Tutorial Lesson IX - More on
Functions: Functions that Return, Default Parameters,
Libraries

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don’t know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

Introduction

It has been awhile since my last lesson, and this one is going to build heavily on that one.
So if you were at all shaky on lesson 8, I recommend re-reading it. You don’t have to
have it mastered, and in fact I would expect that most people won’t be that far along. In
fact, I’m hoping that seeing more examples in this lesson will help people that are still a
bit confused on the subject. However, if you don’t at least get the general idea of the last
lesson, this one won’t make much sense at all.

We’re going to be taking the idea of the function from the last lesson, and extending that
idea in a couple of different ways. The last time, we talked about the very basics of using
a function, and while there were uses for it, the concept was very limited. Here, we’re
going to add a few things to make functions much more versatile.

Functions that Return

Up until this point, every function that we’ve written ourselves has been an “action.” That
is, it has done things, but it hasn’t returned an answer. We specified that our function was
an action by declaring it as type “void.”

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

My guess is that nearly all of the functions you will end up writing will end up being
actions. However, there are a few times when you need to calculate something. Let’s do a
simple example… suppose we have a mage’s guild. As they are fond of their privacy,
their tower can only be accessed through a magical portal, and that portal makes sure
only to transport in people whose primary focus is magery.

The way I’m going to handle this is to write a function to check the percentage, by level,
of a character’s magical classes. A pure level 1 wizard with no multiclass would return
100%. A second level fighter, third level sorcerer multi would return 60%. Both of those
would be let in, but the level 7 rogue, level 2 wizard would only be 22.22%, and would
be left out in the cold.

First, let’s write our function. We want it to take in an object (a creature), and spit out the
percentage. We’ll give the percentage in decimal form. If you remember, a decimal
number is type “float.” So to declare the function, it is:

float GetMagePercent(object oPerson)

Really, the calculation done here is fairly easy. We need to get the total level of the
creature passed to the function. (I did this before with GetLevelByPosition, but I’ve since
realized that GetHitDice is a much simpler solution.) We also need the levels of wizard
and sorcerer, easily gotten with GetLevelByClass. A simple division, and we have our
percent.

The thing is, how do we tell the function we are writing that the number we found is our
“answer”? It is fairly simple… we tell it to “return” the value. Let’s take a look at the
entire code.

NWScript:

// This function will return the percent of a creature's
// levels that are mage-related, expressed as a decimal
// number. It will return 0.0 if the object passed to it
// is not a creature.
float GetMagePercent(object oPerson)
{
int nTotalLevel=GetHitDice(oPerson);
if (nTotalLevel==0) // if not a creature, return 0.0
 return 0.0;
else // else, calculate the percent and return it
 {
 int nMageLevel=GetLevelByClass(CLASS_TYPE_WIZARD,
oPerson)+GetLevelByClass(CLASS_TYPE_SORCERER, oPerson);
 float
fMagePercent=IntToFloat(nMageLevel)/IntToFloat(nTotalLevel);
 return fMagePercent;
 }
}

Most of it should be familiar to you, it is just the last line that is new. We’ve spent the
rest of the script calculating fMagePercent, the last line just says that when the function is
called, that will be the output.

A further note on what I did: Notice that I am careful about what happens if GetHitDice
returns 0. If we use our function properly, that should never happen. However, the more
“checks” you put in to deal with errors, the better. It may be that a weapon accidentally
gets passed to our function. If that were to happen, we’d get a “division by 0” error, and
cause all sorts of havoc.

Now that the function is written, how do we make use of it? Well, pretty much like any
BioWare written function. (Again, remember that for the moment, we have to put the
whole function code into our script where we want to call it.)

So, plop down a portal placeable (I actually used a magic sparks, for variety), and put a
trigger around it. Paint a waypoint elsewhere, and call it WIZTOWER_WP

Put the following into the OnEnter code for the trigger:

NWScript:

// This function will return the percent of a creature's
// levels that are mage-related, expressed as a decimal
// number. It will return 0.0 if the object passed to it
// is not a creature.
float GetMagePercent(object oPerson)
{
int nTotalLevel=GetHitDice(oPerson);
if (nTotalLevel==0) // if not a creature, return 0.0
 return 0.0;
else // else, calculate the percent and return it
 {
 int nMageLevel=GetLevelByClass(CLASS_TYPE_WIZARD,
oPerson)+GetLevelByClass(CLASS_TYPE_SORCERER, oPerson);
 float
fMagePercent=IntToFloat(nMageLevel)/IntToFloat(nTotalLevel);
 return fMagePercent;
 }
}
void main()
{
object oPC=GetEnteringObject();
if (GetIsPC(oPC) && (GetMagePercent(oPC) > 0.50))
 AssignCommand(oPC,
JumpToLocation(GetLocation(GetWaypointByTag("WIZTOWER_WP"))));
}

It might not be a bad idea to break the AssignCommand line into several steps… first get
the waypoint, then the location, and then jump to that location. It is sort of a matter of
style… here, I can follow the levels of nesting fairly easily, so I don’t feel the need to

break it down into steps.

Another Example

Here’s another example of a function to calculate something. Sometimes (well, ok,
often), I like to be a little bit sadistic to my pcs. I made an imp that had a key that they
needed. He offers to sell the key to them, for a certain amount of gold. The kicker is that
the gold he asks for is always 1gp more than the entire party has….

So, we need a function for finding the total party gold. Obviously, this will be an integer.
There is a function to get the gold from one pc, so we’ll just loop through all the pcs,
check if they are in the party, and if so add the gold to the count.

Here is my version of the function, then:

NWScript:

// This function will return the total gold of all pcs in the
same
// party as oPC. It will return 0 if the input is not a player
// character.
//
int GetPartyGold(object oPC)
{
if (!GetIsPC(oPC)) // if not a pc, return 0
 return 0;
else // loop to get the gold
 {
 object oCharacter=GetFirstPC();
 int nGoldCount=0;
 while (oCharacter != OBJECT_INVALID)
 {
 if (GetFactionEqual(oPC, oCharacter)) // different parties
have different factions
 nGoldCount=nGoldCount+GetGold(oCharacter);
 oCharacter=GetNextPC();
 }
 return nGoldCount;
 }
}

To test this, go ahead and put an npc into your module. Make a conversation for it,
getting as detailed as you want. At some point, put in a node for the npc to offer to sell
the key. Make the text:

“Of course I will sell you the key, mortal. It shall cost you a mere <CUSTOM1000> gold
coins.”

Then, on the “ActionsTaken” tab, put in the following script:

NWScript:

//
 <Delete this line, cut and paste the GetPartyGold function
here.>
//
//
void main()
{
object oTalker=GetPCSpeaker(); // Get the speaking pc
int nPrice=GetPartyGold(oTalker)+1; // Set the price to 1 more
than party gold
SetCustomToken(1000,IntToString(nPrice)); // Set the token for
the conversation
}

The SetCustomToken is an interesting function… it is only used inside a conversation.
Basically, it allows you to stick any kind of text into a conversation. Note in the text of
the conversation, we put <CUSTOM1000>. When the conversation is “spoken”, that will
be taken out and replaced with whatever we have set as custom token number 1000.

Thus, that last line of the script is saying to convert the price to a string, and store that
price into token 1000.

A note about custom tokens: It is best if you always set the custom token where you are
going to use it. While it is possible to set it and refer back to it later, this is generally
considered bad form. (Especially when dealing with erfs.) Further, note that tokens 0
through 9 are used by BioWare, and attempting to use them in your conversation can
result in unexpected behavior, so it is best to avoid those numbers.

Default Inputs

Here is a very generic little function that is quite handy in many situations.

NWScript:

// This function flips a lever (or some other placeables) between
two
// positions. The STATE variable on the lever is set to 1 the
first time
// the lever is used, and 0 when used again.
//
// Written by Celowin
// Last Updated: 7/23/02
//
void FlipSwitch(object oLever=OBJECT_SELF)
{
// STATE will be 0 for off, 1 for on
int nUsed=GetLocalInt(oLever, "STATE");
if (nUsed == 0)

 {
 AssignCommand(oLever,
ActionPlayAnimation(ANIMATION_PLACEABLE_DEACTIVATE));
 SetLocalInt(oLever, "STATE", 1);
 }
else
 {
 AssignCommand(oLever,
ActionPlayAnimation(ANIMATION_PLACEABLE_ACTIVATE));
 SetLocalInt(oLever, "STATE", 0);
 }
}

Basically, all this does is takes in as input a placeable (like a lever), and causes it to flip
between two states… on and off.

Nothing in this script is all that exciting, but there is a new concept inside the declaration.

void FlipSwitch(object oLever=OBJECT_SELF)

What is the “=OBJECT_SELF” doing there? Basically, it is saying that if no input is
given to the function, it is going to assume that the input is OBJECT_SELF.

So, if we have a script on a lever, we could just put the command:

FlipSwitch();

into the script, and it would to the animation and change the state of the lever which the
script was attached to.

If, on the other hand, we wanted the switch to flip under some other circumstance (say
when a chest was opened), we could put into the script something like:

oRemoteLever = GetObjectByTag(“Lever6”);
FlipSwitch(oRemoteLever);

You never have to declare this kind of default input, and in fact I would be kind of
careful about when I would do so. However, under the right circumstances, it adds
another layer of versatility to what you can do with functions.

Another Example

Here’s another example of default inputs. I like to add a lot of horror and mystery to my
adventures. Most of the time, I go for subtlety, keeping the players guessing as to what is
really going on. However, sometimes nothing can beat a good dose of old fashioned gore.

Hence, I use the following function once in awhile:

NWScript:

// This function kills a creature in an explosion of gore.
//
// oVictim is the target of the effect
// If bAffectPlot is TRUE, then the script will work on
// creatures with the plot flag set.
//
// Written by Celowin
// Last Updated: 7/23/02
//
void BloodExplode(object oVictim=OBJECT_SELF, int
bAffectPlot=FALSE)
{
if ((!GetPlotFlag(oVictim) || bAffectPlot) &&
(GetObjectType(oVictim)==OBJECT_TYPE_CREATURE))
// If the victim doesn't have the plot flag, it works
// If bAffectPlot is TRUE, it works
// Only works on creatures
 {
 // Create the effects: the explosion, and the death
 effect
eBloodShower=EffectVisualEffect(VFX_COM_CHUNK_RED_LARGE);
 effect eDeath=EffectDeath();
 // Make sure the victim can be killed
 SetPlotFlag(oVictim, FALSE);
 // Apply the effects
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eDeath, oVictim);
 ApplyEffectAtLocation(DURATION_TYPE_INSTANT, eBloodShower,
GetLocation(oVictim));
 }
}

In this function, we have two inputs: the creature we want to explode (defaults to
OBJECT_SELF) and a true/false input that says whether we wish it to affect creatures
with the plot flag set (defaults to FALSE).

So, any one of these declarations would be exactly the same if used in a script:

BloodExplode();
BloodExplode(OBJECT_SELF);
BloodExplode(OBJECT_SELF, FALSE);

Note that we can leave off as many variables from the end as we want, but we can’t leave
off an input from the front if we’re going to change one of the later ones. That sentence is
more confusing than the concept is, so let me try to give an example.

Suppose we want to have a zombie explode when it is hit, regardless of whether the plot
flag is set. So, the first input would be OBJECT_SELF (the default) but the second input

would be TRUE (non-default). There is no way to actually make use of the default for the
first input, since we’re changing the second. The only way to declare this would be:

BloodExplode(OBJECT_SELF, TRUE);

Something like:

BloodExplode(,TRUE);

is not valid syntax.

The other thing from this function that I should probably talk about is the conditional, the
line:

if ((!GetPlotFlag(oVictim) || bAffectPlot) &&
(GetObjectType(oVictim) == OBJECT_TYPE_CREATURE))

Unless you are really familiar with this stuff, you probably got to this line, scratched your
head for a bit, looked at it again, and then gave up on figuring it out. Again, it is sort of a
matter of style… I loathe nested ifs. Sometimes they are needed, but if you go overboard
on them, it makes your code a nightmare to trace through. Perhaps it is the fact that I have
a mathematical background rather than a programming one, but the statement I just wrote
is far easier for me to follow than a bunch of ifs inside each other.

So, let’s break it down. When do we want the script to actually work?

• It will only affect creatures.
• It will affect creatures without the plot flag set.
• If a creature has the plot flag set, it will still affect it if bAffectPlot is TRUE.

The first one of these is immutable. It has to be a creature, otherwise nothing else matters.
In other words, it has to be a creature AND other conditions need to be true. The &&
stands for logical “and”, so the script is checking that the object type of the input is
creature, and also something else.

That leaves us with the part of it that reads:

(!GetPlotFlag(oVictim) || bAffectPlot)

The || is “or”. If either side of it is true, then this part of the statement is true. bAffectPlot
is the input we gave… TRUE or FALSE. If it is true, we don’t have anything more to
worry about. The !GetPlotFlag(oVictim) is saying that if oVictim does not have the plot

flag, it will be true. (The ! in front sort of “flips” what we are looking for. Without the !,
it would be true if oVictim did have the plot flag.)

So, putting it all together…. it has to be a creature, AND either that creature doesn’t have
the plot flag OR the function is set to affect things with the plot flag. Confusing, but if
you learn to use the logical operators, your code will be much cleaner.

Function Libraries

Over and over again, to use our functions we have had to put them into the script where
we were going to use them. While they can still be useful, this is kind of limiting.

In particular, both the FlipSwitch and BloodExplode are functions that you might want to
use over and over again, in all sorts of places in the module. (Well, maybe most people
wouldn’t use the BloodExplode as much as I do, but anyway…) Sure, we can cut and
paste again and again, but there is a better way.

Before I begin, just a general note: I only put things into a library like this if I’m going to
be using them in many different scripts. If I’m only going to use a function in one place, I
won’t worry about it at all. If I’m going to be using that function in two or three scripts,
I’ll probably just cut and paste it to where I’m going to need it. It is only the ones that I
use repeatedly that I end up putting into a library.

Let’s go ahead and set up a simple library to use in our module. Edit a new script, call it
something like “tm_myfunctions”. Cut and paste both the FlipSwitch function and the
BloodExplode function into it. Save it.

When you try to save, it will pop up with something like NO FUNCTION MAIN() IN
SCRIPT. Just ignore it.

Now for the cool part. Now, in any script we write, we can put at the top the line

#include “tm_myfunctions”

And we can use any function we’ve put into that file!

So, as a simple example, suppose I want to pull a lever and make the nearest zombie
explode. (I’ll give the zombie the tag ZOMBOMB, and the lever the tag ZOMBLEV.)
The script is then simplicity in itself:

NWScript:

// tm_zomblev_ou
// This script will destroy the nearest zombie with tag ZOMBOMB
to the lever.
//
// Written by Celowin
// Last Updated: 7/23/02

//
#include “tm_myfunctions”
void main()
{
FlipSwitch();
if (GetLocalInt(OBJECT_SELF, “STATE”)==1)
 {
 object oZomb=GetNearestObjectByTag(“ZOMBOMB”);
 BloodExplode(oZomb);
 }
}

Basically, all the #include does is take the text of the file and stick it in place of itself. In
essence, it does the “cut and paste” for you.

Warnings about Libraries

As amazingly useful as libraries are, there are a few things you have to be very careful
about.

First, I’m going to reiterate what I said before: only put functions that you are going to
use and reuse into your libraries. The larger your libraries get, the longer they take to
compile. In a big module, this gets annoying very fast.

Even if you’re only putting in repeatedly used functions, you might find a library getting
large and clunky. If so, consider breaking it down into smaller libraries: one for creatures,
one for placeables, one for doors… or however else you want to divide it. It is up to you,
whatever helps you to know what library to use for the function you want.

Along with that, also realize that since the include statement is just sticking in text, there
is no reason why you have to restrict yourself one include statement in your script.

#include “tm_creaturelib”
#include “tm_doorlib”

would be perfectly acceptable.

Finally, a very important point that many non-programmers forget about… if you modify
your library, you should recompile any script that includes that library. This could get
ugly, since it is very easy to lose track of what scripts call your libraries. Luckily, there is
a way around it.

In the toolset, there is a “Build” button. This basically says “recompile all of the scripts
for this module.” Hence, if you ever modify a library, you should immediately hit that
Build button to make sure everything “checks out.” Again, you will get error messages
that the libraries themselves have no void main() in them… but as long as that is the only
error message you get, you’re set.

Onward

This lesson has been huge and has a lot of little concepts. I want to stress for the people
reading that if you don’t understand everything in the lesson, you’re probably not hurting
yourself too badly. While the things here can certainly make your scripting lives easier,
none of them are strictly needed. Definitely attempt to learn it, and ask questions if
you’re having problems, but if you feel you’re in over your head it isn’t the end of the
world.

I think my next lesson is going to be on henchmen, if I can figure it out. I really don’t
think there is a lot of actual scripting that has to be done to set up a henchman, but I’m
sick of seeing 50 questions a day on the subject.

After that, I’m going to change the format of the lessons. You really have almost all the
general syntax needed for scripting at this point, so there really isn’t a whole lot more I
can do in that regard. Instead, I’m going to focus more on the “scripting process.”
I’ll start with an idea, talk about design considerations, limiting the scope, and
implementation. (I’ll probably go light on the debugging phase, because the forum
moderators wouldn’t appreciate the amount of profanity that is involved in my debugging
methods.)

Celowin’s Scripting Tutorial Lesson X - Henchmen

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don’t know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

A Few Notes on this Lesson

This lesson is a lot different from all my previous ones. In fact, I was a little hesitant to
write this, because there isn’t really all that much scripting involved with this. Most of it
is just knowing where to use the functions already written by BioWare. However, there
are so many questions on doing this that I decided to cave in.

I rewrote BioWare’s function for leveling up henchmen. I did this for a few reasons:

• I wanted something more generic. There are limits inherent in BioWare’s function
that are difficult to change.

• I didn’t like the naming convention needed for BioWare’s function. It doesn’t
make a lot of sense to me.

• Boredom is a powerful motivator. Most of the process of creating a henchman is
pure tedium, and I wanted to do something interesting.

• Er, well… I couldn’t find BioWare’s function at first. I pretty much had the whole
thing written at the point where I found the right place to look.

Also, please note that putting a henchman into a module is not a trivial task, even with

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

step by step instructions. Expect to spend a few hours getting even a basic one set up, and
a lot more if you want to give them interesting dialogue.

Other people have worked on extensions to henchmen… improving the AI, flexibility in
equipping them, and multiple henchmen are some of the ones that I’ve heard about. I
make no claims whatsoever that this lesson will mesh with anyone else’s scripts. I’m
making a basic henchman here, any modifications you wish to make are not my
responsibility.

Step 1: Create the Lowest Level Version

The first thing to do is to create the “first” henchman, at the lowest level. (For the official
campaign, the lowest level henchmen are level 4, but there is no reason here why you
need to stick to that.)

My suggestion on handling this (and all higher level versions) is to start out with a pc.
Create it using the “Create New Character” in the game, and then put the character into a
module with a “level up” lever.

Create a simple module, with one tiny area. Insert a placeable lever, and into the “On
Used” script, attach the following:

NWScript:

// On Used Script: tm_xplever_ou
// This function awards the lever puller with tons of xp.
// To be used only for testing purposes, remove from final
// module.
//
// Written By: Celowin
// Last Updated: 7/25/02
//
void main()
{
object oPC=GetLastUsedBy();
GiveXPToCreature(oPC, 10000);
}

Save everything, and start up the module with your “pc version” of the henchman. Pull
the lever, and start leveling up your character. Pick all the skills, spells, feats, etc. as you
feel fit the character. Then, when you have the “henchman” to the appropriate level for
the first version, stop and write everything down.

Remember to save the game (we’ll be coming back here later), and then open up your
“real” module, where you want your henchman, in the toolset. Create your henchman,
giving it all the abilities that we figured out using the xp lever.

From here, on, to stop using the term “your henchman,” I’m going to be using the name

“Coric Galroud.” Of course, there is nothing magical about this name, you can call it
whatever you want. I do, however, suggest you keep the first name relatively short, about
10 characters maximum.

Important! Badger Alert! I can’t count the number of times I’ve seen a message like
this, “Help! I made a henchman, and when it leveled up it turned into a badger!” In
almost every single case, this is because the tag and/or blueprint for the npc was set
wrong.

Again, I’m not using the BioWare level up functions, so my naming conventions are a
little bit different from theirs. The tag for the henchman should be the first name, but in
all caps. In my case, the tag is CORIC. The blueprint (found on the Advanced tab) is the
name in all lower case, plus the two digit version of the henchman level. Again, in my
case for a level 4 Coric, the blueprint would be coric04.

I can’t stress this enough. Tag = uppercase, blueprint = lowercase with level.

One more time –
Tag: CORIC
Blueprint: coric04

Moving on, other things to set on our henchman:

• Make sure the faction is set to “Merchant”
• Make sure the No Permanent Death box is checked.
• Equip the henchman. Start him out with a melee weapon equipped, but have a

ranged weapon in inventory, with plenty of ammunition.
• There will be lots of conversation with the henchman. Make certain it has a

portrait.
• Make sure perception range is set to Default.

Now, we need to set up the basic scripts for our henchman. I’m just going to use a “plug
and play” approach here, we’re not going to delve into exactly how these scripts work.
All these scripts can be selected from the drop down menu, or else the names typed in
manually. (Of course, double check you have the name exactly right if you type it.)

A couple of notes: While BioWare references nw_ch_aca for the OnRested script, this
script doesn’t seem to exist. I left it blank, and I don’t really notice any difference in
behavior. Further, the nw_ch_acd script does absolutely nothing. I put it in for reference,
but you can safely leave it out if you’re not planning on modifying your henchman
behavior.

• OnBlocked: nw_ch_ace
• OnCombatRoundEnd: nw_ch_ac3
• OnConversation: nw_ch_ac4
• OnDamaged: nw_ch_ac6
• OnDeath: nw_ch_ac7
• OnDisturbed: nw_ch_ac8
• OnHeartbeat: nw_ch_ac1
• OnPerception: nw_ch_ac2
• OnPhysicalAttacked: nw_ch_ac5
• OnRested: Leave Blank
• OnSpawn: nw_ch_ac9
• OnSpellCastAt: nw_ch_acb
• OnUserDefined: nw_ch_acd

Ok, check one more time that your tag and blueprint are set properly, and also make
certain that the henchman actually has the feats to use the equipment you’ve given it.
Once everything is set, it is time to work on the conversation.

Step 2: Setting up the Conversation

Actually, before going too much further, I would ok out of the npc, and save the module.
There is no sense in losing all of your hard work if the editor crashes. After that, start
back up, open the npc, and edit the conversation.

This is probably the most complicated part, because there are lots of annoying little
details for the conversation. I stripped the conversation down about as far as it could go,
down to just “do this,” and there are still a lot of nodes.

Anyway, be sure you have a bit of time to spend setting this up, and edit the tree to look
like this (best I can do with ascii). Note that the H3: type things are just so I can reference
specific conversation nodes, and should not be typed in. H is something the henchman is
saying, P is something the player is saying.

NWScript:

Root
|-H1: Greetings, do you have need of a henchman?
| |-P1: Yes, join me.
| | -H2: Excellent, that I shall.
| |-P2: Not at this time.
| -H3: As you wish. Speak to me if you change your mind.
|
|-H4: I'm sorry, I serve another and have no time to speak with
you.
|
|-H5: How may I serve you, <master/mistress>?
 |-P3: I no longer have need of your services.

 | -H6: I'm sorry you feel that way, but I shall leave if that
is your desire.
 | |-P4: Aye, it is.
 | |-P5: Aw, if it makes you feel that badly, you can stay.
 |-P6: I wish you to undergo some training.
 | -H7: Absolutely! I am always eager to learn.
 |-P7: Let's discuss our adventuring plans.
 -H8: How should I behave?
 |-P8: I want you to fight hand to hand.
 | - H9: Done. Anything else?
 | |- P9: Yes.
 | | - (Link to H8)
 | |- P10: No.
 |-P11: I want you to fight from range.
 | - (Link to H9)
 |-P12: Change your following distance.
 | -H10: Aye, aye. How close do you want me?
 | |-P13: Stick close to me.
 | | - (Link to H9)
 | |-P14: Keep a moderate distance.
 | | - (Link to H9)
 | |-P15: I don't want to be seen with you. Stay far
away.
 | - (Link to H9)
 |-P16: I think you need to change your healing
strategies.
 | -H11: You're the boss. When should I heal?
 | |-P17: Heal when I'm slightly wounded. (75%)
 | | - (Link to H9)
 | |-P18: Heal when I'm moderately wounded. (50%)
 | | - (Link to H9)
 | |-P19: Wait until I'm near death. (25%)
 | - (Link to H9)
 |-P20: Stop searching all the time! It is getting on my
nerves.
 | - (Link to H9)
 |-P21: We're missing important clues. I think you should
search.
 | - (Link to H9)
 |-P22: Let's try to surprise the enemy. You sneak
around.
 | - (Link to H9)
 |-P23: I favor the direct approach. Stop sneaking.
 | - (Link to H9)
 |-P24: I'm inept with mechanical things. Help me with
doors and chests.
 | - (Link to H9)
 |-P25: Opening doors and chests is a tricky business.
Let me handle them.
 | - (Link to H9)
 |-P26: That's all for now.

Note, of course, that I would never actually use a conversation this stripped down in an
actual adventure. Your henchman would have zero personality. Also, I haven’t put any
provisions for “memory” of the henchman.

Ok, the basic tree is set up, now we have to attach conditions and actions to it. Again, I’m
just going to use the BioWare functions as much as possible. A few places I’ve made my
own, but I’ll deal with those last. (Note: A few of the BioWare functions reference
journal updates. While it would be good form to comment those lines out, it isn’t strictly
necessary. Just be aware that if you “Build” your module, the editor will throw a hissy fit
over the missing journal entries. Ignore it, the module will still run fine.)

• H1, Appears When: tm_hirecheck (see below)
• H2, Actions Taken: nw_ch_action_13
• H4, Appears When: tm_othercheck (see below)
• P4, Actions Taken: nw_ch_remove
• P6, Appears When: tm_levcheck (see below)
• H7, Actions Taken: tm_henchlev (see below)
• P8, Appears When: nw_ch_comrange
• P8, Actions Taken: nw_ch_gomelee
• P11, Appears When: nw_ch_commelee
• P11, Actions Taken: nw_ch_goranged
• P13, Actions Taken: nw_ch_dist_6
• P14, Actions Taken: nw_ch_dist_12
• P15, Actions Taken: nw_ch_dist_18
• P16, Appears When: nw_ch_heal_0
• P17, Actions Taken: nw_ch_heal_75
• P18, Actions Taken: nw_ch_heal_50
• P19, Actions Taken: nw_ch_heal_25
• P20, Appears When: nw_ch_yes_srch
• P20, Actions Taken: nw_ch_srch_off
• P21, Appears When: nw_ch_no_srch
• P21, Actions Taken: nw_ch_srch_on
• P22, Appears When: nw_ch_no_stlth
• P22, Actions Taken: nw_ch_stlth_on
• P23, Appears When: nw_ch_yes_stlth
• P23, Actions Taken: nw_ch_stlth_off
• P24, Appears When: nw_ch_no_locks
• P24, Actions Taken: nw_ch_lock_on
• P25, Appears When: nw_ch_yes_locks
• P25, Actions Taken: nw_ch_lock_off

Step 3: Writing Our Functions

Ok, there were a few functions that we need up there for the conversation. All but the
level up one is very easy, so I’ll start with those.

For node H1: tm_hirecheck

NWScript:

// Starting Conditional script: tm_hirecheck
// Should only be placed in a henchman conversation file.
// This function returns TRUE if the henchman does not have a
master.
//
// Written by: Celowin
// Last Updated: 7/25/02
//
int StartingConditional()
{
 int iResult;
 iResult = GetMaster()==OBJECT_INVALID;
 return iResult;
}

For node H4: tm_othercheck

NWScript:

// Starting Conditional script: tm_othercheck
// Should only be placed in a henchman conversation file.
// This function returns TRUE if the pc speaking is not the
henchman’s
// current master.
//
// Written by: Celowin
// Last Updated: 7/25/02
//
int StartingConditional()
{
 int iResult;
 iResult = GetPCSpeaker()!=GetMaster();

return iResult;

}

Now for the hard stuff. I’m going to be using a few functions multiple times, so I’m
going to write a library. People that went through lesson 9 should know what these are. If
you are just coming here to learn about henchmen, a quick rundown: Put in the following
as a script tm_henchlib, and save it, not attached to any event handle. It won’t compile
properly, you’ll get an error message like NO VOID MAIN() IN SCRIPT. Just ignore
that message.

A further note. I’ve made it so that it is easy to change three properties of henchmen: the
minimum level, the maximum level, and how many levels behind the pc the henchman
will “lag.”

For example, say you’re writing a module for characters of level 4-10. You want to give

your characters a bit of a boost early on, so you set the minimum henchman level to 6.
Later on, you want less of an impact from henchmen, so you set that they will lag 2 levels
behind the pcs. And just in case the pcs get more xp than you anticipate, you set the
maximum level on the henchman to 10.

In that case, when a level 4 pc gets the first henchman, it will start out at level 6. It will
remain level 6 until the pc hits level 9… then the henchman becomes level 7. The
henchman will always remain 2 levels behind the pc until the pc hits level 12. From then
on, the henchman will always be level 10.

Anyway, to set these things, just alter the numbers at the start of the file.

NWScript:

// My henchman routines: tm_henchlib
//
// Written by: Celowin
// Last updated: 7/25/02
//
#include "nw_i0_henchman"
//
// Defines how many levels behind the pc the henchman lags
// Minimum of 0
int HENCH_LAG=1;
// Defines the lowest level the henchman can be
// Minimum of 1, Maximum of 20
int HENCH_MIN=4;
// Defines the highest level the henchman can be
// Minimum of HENCHMIN, Maximum of 20
int HENCH_MAX=14;
//
// This function figures out what level the henchman
// "should" be, based on the min, max, and lag
// numbers above, as well as the pc level.
int GetTargetLevel(object oHench=OBJECT_SELF)
{
// Find the pc's level.
int nMasterLevel=GetHitDice(GetMaster(oHench));
// Apply the lag.
int nTargetLevel=nMasterLevel-HENCH_LAG;
// If that is less than the minimum level, the
// henchman should be that minimum level.
if (nTargetLevel < HENCH_MIN)
 nTargetLevel = HENCH_MIN;
// If the level is over the max, cap the level
// to that max.
if (nTargetLevel > HENCH_MAX)
 nTargetLevel = HENCH_MAX;
return nTargetLevel;
}
//
// This function checks to see if the henchman
// is ready to level up.
int GetReadyToLevel(object oHench=OBJECT_SELF)

{
// Find both the current henchman level, and
// what level the henchman should be.
int nTargetLevel=GetTargetLevel(oHench);
int nCurrentLevel=GetHitDice(oHench);
// If the current level is too low, it is ready
// to level up.
if (nCurrentLevel<nTargetLevel)
 return TRUE;
else
 return FALSE;
}
//
// This is the biggie. This is the function to
// actually level up the henchman.
void LevelHench(object oHench=OBJECT_SELF)
{
// Find the desired level.
int nTargetLevel=GetTargetLevel(oHench);
// Whee! Fun with string manipulation!
// All this is working to find the appropriate blueprint
// to create the "new and improved" henchman.
string sNewBlueprint=GetTag(oHench);
sNewBlueprint=GetStringLowerCase(sNewBlueprint);
if (nTargetLevel<=9)
 sNewBlueprint=sNewBlueprint+"0";
sNewBlueprint=sNewBlueprint+IntToString(nTargetLevel);
// Create the new henchman.
// There will be a "fade in" of the new one and a "fade out"
// of the old.
object oNewHench=CreateObject(OBJECT_TYPE_CREATURE,
sNewBlueprint, GetLocation(oHench));
// Get rid of the old henchman. You're fired!
object oMaster=GetMaster(oHench);
RemoveHenchman(oMaster, oHench);
// Copy our desired behavior patterns to the new henchman.
CopyLocals(oHench, oNewHench);
AssignCommand(oNewHench,SetAssociateListenPatterns());
// Add in our new henchman.
AddHenchman(oMaster,oNewHench);
// Take out the trash.
DestroyObject(oHench);
}

Now that we have that library set up, the rest of the scripts are easy, just calling the
appropriate functions from the library.

For node P6: tm_levcheck

NWScript:

// Starting Conditional script: tm_henchlev
// Should only be put into a conversation file for a henchman
//
// Returns TRUE if the henchman is ready to level up.

//
#include "tm_henchlib"
//
int StartingConditional()
{
 int iResult;
 object oHench=GetHenchman(GetPCSpeaker());
 iResult = GetReadyToLevel(oHench)==TRUE;
 return iResult;
}

For node H7: tm_henchlev

NWScript:

// Action Taken script: tm_henchlev
// To be put in a henchman conversation.
//
// This amazingly complicated script causes a henchman to level
up.
//
#include "tm_henchlib"
//
void main()
{
LevelHench();
}

Ok, enough for the conversation. Save the conversation, and save the module.

Step 4: Creating Higher Level Versions of the Henchman

At this point, our “base” henchman is completely done. It has equipment, stats, the
appropriate tag and blueprint, and a conversation. Now, we need to create all the
henchman that it will “level up” into.

Go back to the save game from when we first found the stats for our henchman. Now,
using the lever for xp, keep levelling up, and write down the changes as you go. You
don’t need to write down absolutely everything, but at least write down the information
from the “changes” window at the end of the level up process.

For example, if I’m working on a fighter henchman, I might write down something like:

Lev 4: Str +1, HP +14, Disc +1, Parry +1, Spec(longsword)

And so on for each level up, until I’m at the max henchman level.

Now, close out the game, and start up the toolset.

Go to your henchman, and add him to your custom palette.

On the palette, select “Edit Copy.” Start putting in changes to the next higher level.
Update the character level, feats, skills… everything your wrote down from before.

Warning! Badger alert! Remember to update the blueprint to the appropriate thing. You
shouldn’t have to change the tag, but the blueprint needs to be changed to the “coric05”
format. Also, remember that you have to change the class level for your henchman to
account for the new level.

Yet another reminder –
Tag: CORIC
Blueprint: coric12

Keep doing this. Each time you have the new level in, edit another copy and update it to
the next level, until you have all your versions set up.

Now, go back through the henchmen and play with their equipment, giving them more
level appropriate stuff. Starting at level 7, their ranged weapons should have the
“Unlimited Ammunition” ability. (Unfortunately, that makes the weapon level 7
minimum, so it can’t be given to lower level henchmen.)

Stats, spells, skills, feats, levels, blueprint, and equipment. Remember to change all these
things for each new copy of the henchman. Then, we’re almost done.

Step 5: Module Properties

Almost everything is set to go at this point. Just a few minor things to add to the module
to make things work.

First, at whatever “home base” place you want in your module, add a waypoint with tag
NW_DEATH_TEMPLE. This is where the henchman will return to when it dies.

Second, we need to add a script to have the henchman level up when the pc does. Go to
Edit -> Module Properties -> Events -> OnPlayerLevelUp, and put in the following
script:

NWScript:

// OnPlayerLevelUp script: tm_levelup
//
// When a player levels, this checks to see if the henchman is
ready to
// level up as well, and takes necessary action.
//
#include "tm_henchlib"
//
void main()

{
// Find the leveling pc and its henchman
object oPC=GetPCLevellingUp();
object oHench=GetHenchman(oPC);
//
if (GetIsObjectValid(oHench)) // Don’t go on if no henchman
 {
 if (GetReadyToLevel(oHench)) // Don’t go on if not time to
level
 {
 LevelHench(oHench);
 }
 }
}

Conclusion

And that should do it. If you’ve followed everything, your henchman should pretty much
behave exactly like the ones in the official campaign. (No story or quests, of course.
You’ll have to come up with those on your own.) You have at least a bit more flexibility
on henchman level up behavior if you want to exercise it.

Starting next lesson, I’m going to be taking a slightly different tack. I’ve discussed my
plans in a few places, I won’t reiterate them here. Anyway, we’ll see how it goes, and
whether people will like the new format.

Now that all the real basics are covered, I don’t feel quite the pressure to churn out
lessons. I’ll continue to write, but probably at a lower pace. I’m thinking maybe one a
week… since Wednesdays we’ve been getting new stuff from BioWare, maybe I’ll try to
schedule putting out a new lesson every Friday. That way you have something to play
with over the weekend.

Celowin’s Scripting Tutorial Lesson XI - Process Example:
Bar Brawl

Introduction
The purpose of this sequence of lessons is to take a complete beginner to programming,
and teach him or her how to use NWScript to write modules. The early lessons will be
very basic, and anyone that has done any coding at all will be able to skip over them. The
goal here is to make the lessons so that even the people that just shudder at any type of
code can learn.

Feel free to post these lessons on any forum, print them out, or modify them. However,
just give me credit for doing them.

Any comments on these lessons, good or bad, can be sent to me at
james.foxglove@verizon.net

I am going to assume that anyone looking at these lessons has at least played around with
the Aurora Toolset a bit. If there is enough feedback that people don’t know how to do
the simple placements that I have in these lessons, I will consider spelling out in more
detail what needs to be done.

For those of you that missed earlier lessons and are interested in looking them up, they
have all been placed into the forum Scripting FAQ:
Scripting FAQ

A Word of Thanks

I would like to send out my heartiest thanks to Rhodan for helping me with this lesson.
His aid was invaluable in discussing the scripts, and helping to figure out all the
difficulties in manipulating reputations.

Suggestion for Review

This lesson makes extensive use of loops (Lesson 6) and user defined events (Lesson 4).
If you are at all shaky on those concepts, I suggest you go back and take a look at them
again. If not, the scripts in this lesson are likely to be way over your head.

The New Format

This is the first of the “new” lessons. Lessons 1 through 9 taught all the basics of
scripting. Lesson 10 was sort of a “filler” episode. At this point, we basically have all the
tools, it is just a matter of figuring out how to use them.

Something that has come up over and over in the feedback on my lessons is that people
may understand the commands, but they don’t know when to use them. There is actually
an art to designing a properly functioning script. Like any art form, some people have

mailto:james.foxglove@verizon.net
http://nwn.bioware.com/forums/viewtopic.html?topic=81523&forum=47

more natural talent than others… to some it comes naturally, while others have to
struggle with it.

However, and I can’t stress this enough: anyone can learn. Just because you are trying to
do some complicated script, and don’t see in 5 seconds how to do it, doesn’t mean that
you will never be able to.

In an effort to teach this process of scripting, the way I present the lessons is going to
change. I’m not going to focus on the individual commands any more, unless there is
some strange one that I pull out of nowhere. Instead, I’m mainly going to try to explain
the process that I go through in order to get a script working. I’m going to try to
document everything: the original idea, the design process, the problems I encounter. In
the end, I’m hoping that we come up with a neat, useful script.

Some people will just rip the scripts out of the lessons and ignore the rest, I’m sure. That
is fine… but I’m hoping that some people will actually read through it, and take some
understanding of how to go about creating their own scripts.

I’m going to start with a complicated setup… by far the most ambitious script that I have
created to date. I’m doing this partially to challenge myself, but I’m also doing it so that
you can see all the careful thought and planning that goes into an involved project.

At any rate, ladies and gentlemen, let me introduce you to the…

Singing Spider Tavern

I’ve never been one to go to any of those high-class bars. I hear they serve their drinks in
glass mugs, and I have to laugh. A glass mug wouldn’t last one night at the Singing
Spider Tavern, and I can’t imagine anyone who would drink from one would either. The
Spider draws a rough crowd… dock workers, street toughs, miners… the kind of people
who ain’t got nothing better to do at night than to get drunk and take out their
frustrations at life on one another. My kind of people.

The next several lessons are going to be spent trying to set up different aspects of the
Singing Spider Tavern. At the end, we’ll have a lively place with a lot of character,
perfect for launching any number of adventures. For right now, we’re going to focus on
what happens when things get out of hand. Basically, we want a good old fashioned, all
in good fun bar brawl.

Original Design

Here’s basically what we want to happen:

• There are three types of customers at the bar… dock workers, “Shivs” (members
of a local street gang), and miners. Each group will not attack their own, but are
more than willing to pound on the other groups or on the pcs.

• There are multiple ways to start the brawl. Walking up and punching someone is
bound to do it, but it shouldn’t take nearly that much. The customers are always
spoiling for a fight, and saying the wrong thing can easily toss the match onto the
oil.

• As long as no one uses a weapon, the fight is all in good fun. No one really gets
hurt, though there will be a number that end up taking a nap.

• If a pc does draw a weapon, things become much more serious. The customers all
draw their own weapons, and people actually die.

Potential Problems

Looking through the list and thinking about it, I immediately see several things that we’re
going to have to work to resolve. You should always think ahead and try to foresee
difficulties. There is no way you’ll catch all of them… there are always things you didn’t
imagine going wrong. However, the more you plan for from the start, the better off you
will be.

• The fight shouldn’t cause “real death” unless it turns deadly. We’ll need some
way of handling that.

• We need a way to determine whether weapons are being used or not.
• Spells add another layer of confusion.
• We can apply a sleep effect to the people that get knocked out… but elves are

immune to sleep.
• We’re going to need to be certain to “turn off” hostilities once the fight has been

resolved.
• There are going to be a lot of scripts running. We’ll have to be certain that they

are written in such a way to minimize the load on the processor.

Basic Implementation

My first thought on getting this whole thing to work is to start with the “non-deadly”
combat. How am I going to make it so that things do no “real” damage, but still can
knock someone out?

I can’t just set the plot flags on people, because then there is no way of determining how
much damage would have been done.

My first thought was to heal the damage as soon as it was done, and hold a local variable

on the character (pc or npc) to keep track of how much damage was done. The more I
considered this, though, the more problems I saw. There is no OnDamaged event for pcs,
so I’d have to do something with the heartbeat. And what if some poor weak mage
wandered into the fray, and died in one hit, before any healing?

Instead, I’ll just have the fight play out as normal, using real damage… but I’ll modify
the OnDeath and OnDying events to handle what I wish. If the fight turns deadly, I’ll
partially heal everyone, to account that the “pummeling damage” isn’t as harmful as “real
damage.”

Now, those events are going to have to behave differently depending on whether the fight
was deadly or not. For that matter, we’ll have to be careful that for the pcs, it won’t affect
them if they aren’t in the bar. Because we have things changing because of the “state” of
the fight, immediately the first thing you should think about is a local variable to keep
track of that state. I’ll store it on the area.

We’ll call the variable BRAWL_LEVEL. It will be 0 for peaceful (the original state), 1
for the “good clean fun” brawl, and 2 for “ugly.”

One of the keys to scripting is to break down a large task into manageable steps. For right
now, let’s try to get this much working: No staff, we’ll just have a few patrons in the bar.
Originally all are peaceful, but if one is attacked the brawl starts. When one “dies” it will
knocked unconscious for a bit… let’s say 2 minutes real time, corresponding to 1 hour
until the default time scale. We won’t worry about deadly combat yet. In fact, we won’t
even worry about the different types of patrons, we’ll put them all into the same faction.

Now that I have a goal, I start playing with it. I try what I outlined before… when the npc
dies, he is resurrected, healed a bit, and put to sleep. There are tons of problems that I
didn’t anticipate… this is actually perfectly normal. Let’s see, here are some of the things
that happened as I went through and tried to make it work:

• It was completely random whether the npc would “stay sleeping” or not.
Sometimes they would sleep, but sometimes an accidental “extra” hit on them
would wake them up.

• The npc would resurrect properly, but would “fade out” after a few seconds.
• The npc would die, stand up, and fall over again. While I could almost imagine

them trying to rise up and collapsing, it just didn’t look right.
• The npc’s were too eager to jump back into the fray. What was happening was

that while asleep, they were hearing the “yells for help” from the other patrons I
attacked, and that made them hostile again. So as soon as they woke up, they
would attack again.

There were other problems as well… there isn’t a point in my listing any more. The point

is, that you can’t expect your script to work 100% properly the first time. There are
always things you don’t expect, or things that you’ve forgotten about. You can’t give up
at the first sign of a problem, you have to jump in and see what is causing it.

For example the second point up there… I figured that the npc was being destroyed
because of the death. (Just as the “corpse” of an npc is destroyed after a moment.) I knew,
though, that henchmen didn’t destroy themselves when they died. So, I plopped a
henchman into my module, and looked at the OnDeath script. There was a lot of junk in
there, most of it didn’t look very important. Then I found that somewhere in there, the
SetIsDestroyable command was used. I looked up that command, and found that one of
the things set by that was whether the corpse would remain on death. I tested it, and
found that it fixed my fadeout problem.

For all the other problems, I was starting to get a little bit frustrated. I tried a few things,
and was getting some limited success, but it still wasn’t working really the way I wanted.
Then, I had an inspiration… what if, instead of resurrecting them and sleeping them, I
just left them dead? I could delay the resurrection for 2 minutes. I tested it, and it actually
fixed just about every problem I was having. Since the npc was dead, an extra hit on it
didn’t matter. It fell down, and laid there until it was ressed… so no stupid standing
up/down stuff. And finally, since the npc was dead when anyone else was attacked, it
wasn’t hearing the shouts for help.

In fact, when I thought about it, I realized if I were to use the same method for the pcs, it
would get around the “no sleeping elves” problem.

Anyway, that points out another aspect of the scripting process… don’t be too attached to
doing things one way. Sometimes, another approach works much better. It may not fit
your original “vision” of what is happening, but sometimes a bit of compromise can
result in a much better project overall.

Anyway, if you want to test this “start” of our process, here is the script I eventually
ended up with. (Put this in the “On User Defined” handle, and in the OnSpawn script
uncomment the lines for the OnDeath and OnDamaged user defined events.) I used basic
level 3 fighters for the npcs.

NWScript:

// User Defined Script: fm_sspatron_ud
//
// Sets up the special behaviors for a patron at the
// Singing Spider Tavern. Specifically, death is
// a fleeting thing. The npc will get up after a
// couple of minutes. This is supposed to simulate
// getting knocked out in a brawl.
//
// Written by: Celowin
// Last Updated: 7/27/02
//
void main()

{
int nCalledBy = GetUserDefinedEventNumber();
switch(nCalledBy)
 {
 case 1006: // On Damaged
 // At this point, this doesn't do much. Right now, we're
 // just setting up for future things.
 SetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL",1);
 break;
 case 1007: // On Death
 if (GetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL")==1)
 // Check if the brawl is "safe."
 {
 // First, make sure the npc doesn't self destruct, and
 // can't be bothered during his or her "nap."
 SetIsDestroyable(FALSE,TRUE,FALSE);
 // A bit annoying, but this makes it so the npc won't be
 // hostile when waking up.
 SurrenderToEnemies();
 // After 2 minutes, res the npc.
 effect eRes = EffectResurrection();

DelayCommand(120.0,ApplyEffectToObject(DURATION_TYPE_PERMANENT,
eRes, OBJECT_SELF));
 // Immediately after, heal the npc to half health.
 int nHealAmount = FloatToInt(
IntToFloat(GetMaxHitPoints())/2);
 effect eHeal = EffectHeal(nHealAmount);

DelayCommand(120.1,ApplyEffectToObject(DURATION_TYPE_PERMANENT,
eHeal, OBJECT_SELF));
 }
 break;
 }
}

Expanding The Script

At this point, the basic idea is working (for the npcs, if not the pcs), and now we start
adding more details to is. Again, the idea is to take small pieces, and get one tiny thing
working at a time.

At this point, the thing that really irks me is that even if the patron were to leave the bar,
he would still only be knocked unconscious. The problem is that it always sets the current
area state to a bar brawl when it gets damaged, no matter where it is.

The eventual way that I decided to fix this was through the BRAWL_LEVEL variable.
Instead of starting it at 0, I’ll make 1 peaceful. 2 will be the brawl, and 3 will be deadly.
That way, most areas will be at 0 (default), and we can easily put at extra little check to
be sure we don’t set it away from that.

Now, if you can avoid it, you don’t want to make a shift like this too far into the

process… it can be difficult to track down all the changes you have to make. However, in
this case, we’re really just beginning, and I think it will save us a lot of headaches later
on, so I go ahead and change it.

Now, the next thing is to have the brawl turn deadly if a weapon is used. We’ll just add a
bit to the OnDamaged part of our script, to check to see if the attacker has a weapon
wielded. If so, we’ll set the brawl state up to 3… and since we already check the brawl
level in our OnDeath part, this means the death will be permanent.

Now for a tricky part. When the brawl goes deadly, we want all the patrons to “heal” a
bit, and draw weapons. I could add this into our UserDefined script, but since this is an
“Area Wide” thing, I’m going to write a separate script, for the area. I’ll give it a user
defined number of 3050. I’ll call this function only the first time the fight goes deadly.

There were a number of things that I had difficulty with here… most of them dealing
with my forgetting to give the npcs the feat needed to equip the weapon. Eventually, I got
it working.

At this point, there are 4 scripts in the module:

The OnSpawn for the patrons is just the default, with the OnCombatRoundEnd,
OnDamaged, and OnDeath events commented out. (I also uncommented the ambient
animations, to give them a bit of life.)

The OnEnter for the area:

NWScript:

// On Enter Script: fm_sspider_en
// This is the script for the area The Singing
// Spider Tavern.
//
// It does two things:
// 1. Initializes the brawl state to peaceful, if it
// hasn't been set.
// 2. Stores the pc's current hit points on enter.
//
void main()
{
// Get the current brawl status.
int nBrawl = GetLocalInt(OBJECT_SELF, "BRAWL_LEVEL");
// If the status hasn't been set, set it to 1 (peaceful).
if (nBrawl == 0)
 SetLocalInt(OBJECT_SELF, "BRAWL_LEVEL", 1);
// Get the entering object, check if it is a pc, and if so,
// store the current hp.
object oPC = GetEnteringObject();
if (GetIsPC(oPC))
 SetLocalInt(OBJECT_SELF, GetName(oPC),
GetCurrentHitPoints(oPC));
}

The User Defined for the area:

NWScript:

// User Defined Event: fm_sspider_ud
// This script defines all the major events for the
// Singing Spider Tavern.
// Most of the events deal with the bar brawl that
// happens there.
void main()
{
int nCalledBy = GetUserDefinedEventNumber();
// Declarations up top, out of the switch.
object oCreature;
string sTag;
int nMax;
int nCurrent;
int nHealAmount;
effect eHeal;
switch (nCalledBy)
 {
 case 3050: // The brawl just turned deadly.
 oCreature = GetFirstObjectInArea();
 while (oCreature != OBJECT_INVALID)
 {
 if (GetObjectType(oCreature) == OBJECT_TYPE_CREATURE)
 {
 if (!GetIsPC(oCreature))
 {
 sTag = GetTag(oCreature);
 if (sTag == "SSPATRON")
 {
 // Tell the Creature to equip a weapon at the next
chance.
 SetLocalInt(oCreature, "EQUIP", 1);
 // Calculate the healing amount
 nMax=GetMaxHitPoints(oCreature);
 nCurrent=GetCurrentHitPoints(oCreature);
 nHealAmount = FloatToInt(IntToFloat(nMax-nCurrent) /
2);
 // Heal the "fake" damage
 eHeal = EffectHeal(nHealAmount);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal,
oCreature);
 }
 }
 else
 {
 // For pcs, healing but nothing else
 // Heals half the difference between current and what
the
 // pc had when entering the tavern
 nMax = GetLocalInt(OBJECT_SELF, GetName(oCreature));
 nCurrent = GetCurrentHitPoints(oCreature);
 nHealAmount = FloatToInt(IntToFloat(nMax-nCurrent) / 2

);
 // Apply the heal
 eHeal = EffectHeal(nHealAmount);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal,
oCreature);
 }
 }
 oCreature = GetNextObjectInArea();
 }
 break;
 }
}

And finally, the user defined for the patron:

NWScript:

// User Defined Script: fm_sspatron_ud
//
// Sets up the special behaviors for a patron at the
// Singing Spider Tavern. Specifically, death is
// a fleeting thing. The npc will get up after a
// couple of minutes. This is supposed to simulate
// getting knocked out in a brawl.
// If the fight has turned deadly, death behaves
// pretty much as normal.
//
// Written by: Celowin
// Last Updated: 7/28/02
//
void main()
{
int nCalledBy = GetUserDefinedEventNumber();
// Even though only used in part of the switch,
// These need to be declared up top.
int nBrawl;
object oAttacker;
object oRWeapon;
object oLWeapon;
switch(nCalledBy)
 {
 case 1003: // On Combat Round End
 if (GetLocalInt(OBJECT_SELF, "EQUIP")==1)
 {
 // If the fight just turned deadly, need to equip a weapon
 // Create a dagger first
 oRWeapon = CreateItemOnObject("nw_wswdg001",OBJECT_SELF);
 // Equip the dagger
 ClearAllActions();
 ActionEquipItem(oRWeapon, INVENTORY_SLOT_RIGHTHAND);
 // Remind the npc that he has equipped already
 SetLocalInt(OBJECT_SELF, "EQUIP",0);
 }
 break;
 case 1006: // On Damaged
 // If the brawl level is 1 (peaceful), immediately set it

 // up to 2 (safe brawl).
 nBrawl = GetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL");
 if (nBrawl == 1)
 {
 nBrawl = 2;
 SetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL",2);
 }
 // Next, if the attacker wielded a weapon, set the brawl
 // state up to 3 (deadly). Note that torches and shields
 // are considered out of place in a brawl, and will set it
 // off.
 if (nBrawl == 2)
 {
 oAttacker = GetLastAttacker();
 oRWeapon = GetItemInSlot(INVENTORY_SLOT_RIGHTHAND,
oAttacker);
 oLWeapon = GetItemInSlot(INVENTORY_SLOT_LEFTHAND,
oAttacker);
 if (GetIsObjectValid(oRWeapon) ||
GetIsObjectValid(oLWeapon))
 {
 SetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL",3);
 SignalEvent(GetArea(OBJECT_SELF),EventUserDefined(3050));
 }
 }
 break;
 case 1007: // On Death
 if (GetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL")==2)
 // Check if the brawl is "safe."
 {
 // First, make sure the npc doesn't self destruct, and
 // can't be bothered during his or her "nap."
 SetIsDestroyable(FALSE,TRUE,FALSE);
 // A bit annoying, but this makes it so the npc won't be
 // hostile when waking up.
 SurrenderToEnemies();
 // After 2 minutes, res the npc.
 effect eRes = EffectResurrection();

DelayCommand(120.0,ApplyEffectToObject(DURATION_TYPE_PERMANENT,
eRes, OBJECT_SELF));
 // Immediately after, heal the npc to half health.
 int nHealAmount = FloatToInt(
IntToFloat(GetMaxHitPoints())/2);
 effect eHeal = EffectHeal(nHealAmount);

DelayCommand(120.1,ApplyEffectToObject(DURATION_TYPE_PERMANENT,
eHeal, OBJECT_SELF));
 }
 else
 SetIsDestroyable(TRUE); // Otherwise, "real" death
 break;
 }
}

Ok, at this point I can see that I can’t go on posting the scripts every time I change
something. I’ll just hold off on putting any more up until the end.

Adding Different Groups

I really thought that adding the different groups to the brawl would be very simple…. oh,
how wrong I was! I ended up fighting this for over two weeks, off and on.

It was here that I called in Rhodan. Mainly, I wanted someone to bounce ideas back and
forth with… often, by discussing the problem, you see something you hadn’t noticed
before. The first several problems, I ended up figuring out solutions just by trying to
describe what was going on. Of course, the later ones were much more difficult, and I
lost a lot of hair over them.

The basic idea is simple, and really didn’t change in implementation. A lot of details
were modified, but the overall attack on the problem was never altered.

We have three factions: Miner, Dockworker, and Shivs. The pcs make another faction.

• When the brawl starts, each group goes hostile with each other, but friendly
within their own faction.

• When no one is in combat, the brawl should end, and reset back to “peaceful.”
• When folks “wake up” from being knocked out, they should no longer be hostile.

The first of these was fairly straightforward… loop through the creatures in the bar,
compare them to the other creatures, and if not in the same faction set them to hostile.
The only real problem I had here was getting the nested loops working right. You can’t
use the “GetNext” family of functions for both loops if you are nesting. Once I realized
that, and changed my loop indexing, it worked fine.

The second of these didn’t take too long. I just added to the OnDeath event, and had it
check to see if anyone in the area was still in combat. There were some problems with
creatures remaining “in combat” after there were no enemies around.
SurrenderToEnemies got around that problem, but caused others. In the end, I just
delayed the check for a bit, to be sure that the “combat” state was clear.

The third one was the nightmare… I’ll spare you the gruesome details. I just went back
and forth, over and over, between two states. Either they would still be hostile when they
woke up, or if they were neutral I couldn’t get the brawl to start up again properly. This
led to an extensive study of all the reputation commands, and I’m still not sure about all
of them. However, finally, I realized that the source of all my problems was that I needed
to make use of ClearPersonalReputation. Once I did that, everything fell into place, and I
was able to get it working.

Three Points of Cleanup

Once the reputation problem was solved, I was really pretty happy with it. However,
there were a few things that bugged me:

First, a mage could remove his weapons, and then fireball the patrons into cinders… but
it was still “safe” combat as far as the scripts were concerned. This was easy to solve, I
just added another user defined event, this one for OnSpellCastAt. If the spell was
hostile, it ramped the combat up to deadly. I could pretty much cut and paste the
OnDamaged code, and trim it down a bit. It took only a couple of minutes to fix.

The second one was something that I had been having nightmares about. Creatures tend
to chase you across area transitions… so what happens if the pcs leave the bar during a
brawl, and the patrons chase them outside?

I took the coward’s way out here. All I did was put a trigger in front of the exit. In the
OnEnter script for the trigger, if it is not a pc, I just ClearAllActions. Simple, yet
effective. It is still probably possible to have the npc chase the pc outside, given the right
conditions… but in my testing, I haven’t seen it happen.

The final thing was to make it so that the pcs wouldn’t die in the safe fight either. This
was simple, I just modified the OnDeath for the module, checked for the pc being in the
area and the brawl being safe, and did the same trick I used for the npcs. I sent a message
to the pc to inform him or her that it wasn’t “real death.” I dislike that there is no way to
avoid having them show up as “Dead” under the cursor, but cest la vie.

Where to go from here?

There are many, many things that can be done to build on this idea. I never got around to
making conversations for the patrons, and making alternate ways of starting the fight.
Given that all I need to do is fire the area user defined event, though, that should be very
straightforward.

Every rough bar needs bouncers. How are they going to behave in the fight?

What about the wait staff? Surely they won’t stand quietly by while the bar is thrown into
chaos? Running and hiding seems appropriate.

We’ll add some of that stuff in with the next lesson. For now, let’s just pat ourselves on
the back for a job well done.

The Final Scripts

Ok, here are the final versions that I used in the module, as well as instructions for
building the area:

Build the tavern. I’ll leave the details up to you, but I suggest I fairly large central area, a
storeroom, a bedroom (for the innkeeper, doubles as a dressing room for the entertainers),
and a couple other small rooms. Have only one exit outside.

Make a city area, and connect the two via a door transition.

Create the patrons inside the bar. I made 3 each of my three different factions, and made
them level 3 fighters. Modify this as you wish, but be certain of a few things:

• Make each group a custom faction with parent of Defender, and make each
faction 50 toward the others.

• Make sure the patrons have the “Weapon Proficiency: Simple” feat, so they can
use their daggers.

• Do not give them any weapons, otherwise they will likely be too quick to use
them.

• Give them all, no matter what faction, the tag SSPATRON
• Make sure the No Permanent Death box is checked.
• It is probably a good idea to make the appearances different for the three different

groups.

Ok, now the scripts:

First, a library that I use in a couple of places:

NWScript:

// Reputation Library: fm_replib
//
// This library will eventually hold all of the custom
// functions I write for dealing with reputation. For the
// moment, only one has been needed.
//
// Written by: Celowin
// Last updated: 8/8/02
//
void NeutralReputation(object oTarget=OBJECT_SELF)
// This function neutrals out the reputation of oTarget
// with regards to every other creature in its area.
//
{
object oTargetArea=GetArea(oTarget);
object oCreature=GetFirstObjectInArea(oTargetArea);
while (oCreature != OBJECT_INVALID)
 {
 if (GetHitDice(oCreature)>0)
 // Only affect creatures

 {
 ClearPersonalReputation(oCreature, oTarget);
 // Need to clear the personal reputation first, or everything
 // is flummoxed up.
 if (GetReputation(oTarget,oCreature)<=10)
 // Don't bother unless things are hostile.
 {
 AdjustReputation(oCreature,oTarget,50);
 AdjustReputation(oTarget,oCreature,0);
 // AdjustReputation seems to base the new reputation off
 // the better "direction" of the two. So this actually
 // sets both directions the same.
 }
 }
 oCreature=GetNextObjectInArea(oTargetArea);
 }
}

The OnSpawn for the patrons:

NWScript:

// On Spawn Script: fm_sspatron_os
//
// This is the initialization script for the patrons of the
// Singing Spider Tavern. It is basically a stripped down
// version of the default BioWare script.
//
// Original version: Preston Watamaniuk
// Modified by: Celowin
// Last updated: 8/8/02
//
#include "NW_O2_CONINCLUDE"
#include "NW_I0_GENERIC"
void main()
{
SetSpawnInCondition(NW_FLAG_AMBIENT_ANIMATIONS);
 //This will play Ambient Animations until the NPC sees an enemy or is
cleared.
 //NOTE that these animations will play automatically for Encounter
Creatures.
// I don't believe I will need the other user defined events.
// However, it is better to leave them in and be safe, if I should
// change my mind at some later time.
 //SetSpawnInCondition(NW_FLAG_HEARTBEAT_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1001
 //SetSpawnInCondition(NW_FLAG_PERCIEVE_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1002
 //SetSpawnInCondition(NW_FLAG_ATTACK_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1005
 SetSpawnInCondition(NW_FLAG_DAMAGED_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1006
 //SetSpawnInCondition(NW_FLAG_DISTURBED_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1008
 SetSpawnInCondition(NW_FLAG_END_COMBAT_ROUND_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1003
 //SetSpawnInCondition(NW_FLAG_ON_DIALOGUE_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1004
 SetSpawnInCondition(NW_FLAG_DEATH_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1007
// I have no idea why this line isn't in the original script.
// Oh well, easy enough to add....
 SetSpawnInCondition(NW_FLAG_SPELL_CAST_AT_EVENT); //OPTIONAL
BEHAVIOR - Fire User Defined Event 1011

// DEFAULT GENERIC BEHAVIOR (DO NOT TOUCH)
**

 SetListeningPatterns(); // Goes through and sets up which shouts
the NPC will listen to.
 WalkWayPoints(); // Optional Parameter: void
WalkWayPoints(int nRun = FALSE, float fPause = 1.0)
 // 1. Looks to see if any Way Points in the
module have the tag "WP_" + NPC TAG + "_0X", if so walk them
 // 2. If the tag of the Way Point is
"POST_" + NPC TAG the creature will return this way point after
 // combat.
 GenerateNPCTreasure(); //* Use this to create a small amount of
treasure on the creature
}

The OnUserDefined for the patrons:

NWScript:

// User Defined Script: fm_sspatron_ud
//
// Sets up the special behaviors for a patron at the
// Singing Spider Tavern. Specifically, death is
// a fleeting thing. The npc will get up after a
// couple of minutes. This is supposed to simulate
// getting knocked out in a brawl.
//
// If the fight has turned deadly, death behaves
// pretty much as normal.
//
// Written by: Celowin
// Last Updated: 8/7/02
//
#include "fm_replib"
void main()
{
int nCalledBy = GetUserDefinedEventNumber();
// Even though only used in part of the switch,
// These need to be declared up top.
int nBrawl;
object oAttacker;
object oRWeapon;
object oLWeapon;
switch(nCalledBy)
 {
 case 1003: // On Combat Round End
 if (GetLocalInt(OBJECT_SELF, "EQUIP")==1)
 {
 // If the fight just turned deadly, need to equip a weapon
 // Create a dagger first
 oRWeapon = CreateItemOnObject("nw_wswdg001",OBJECT_SELF);
 // Equip the dagger
 ClearAllActions();
 ActionEquipItem(oRWeapon, INVENTORY_SLOT_RIGHTHAND);
 // Remind the npc that he has equipped already
 SetLocalInt(OBJECT_SELF, "EQUIP",0);

 }

 SetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL",3);
 SignalEvent(GetArea(OBJECT_SELF),EventUserDefined(3050));
 }
 }
 break;
 case 1007: // On Death
 if (GetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL")==2)
 // Check if the brawl is "safe."
 {
 // First, make sure the npc doesn't self destruct, and
 // can't be bothered during his or her "nap."
 SetIsDestroyable(FALSE,TRUE,FALSE);
 // A bit annoying, but this makes it so the npc won't be
 // hostile when waking up.
 // SurrenderToEnemies();
 // After 2 minutes, res the npc.
 effect eRes = EffectResurrection();

DelayCommand(120.0,ApplyEffectToObject(DURATION_TYPE_PERMANENT,
eRes, OBJECT_SELF));
 // Immediately after, heal the npc to half health.
 int nHealAmount = FloatToInt(
IntToFloat(GetMaxHitPoints())/2);
 effect eHeal = EffectHeal(nHealAmount);

DelayCommand(120.1,ApplyEffectToObject(DURATION_TYPE_PERMANENT,
eHeal, OBJECT_SELF));
 // Finally, neutral out reputations
 DelayCommand(120.2,NeutralReputation());
 }
 else

 break;
 case 1006: // On Damaged
 // If the brawl level is 1 (peaceful), immediately set it
 // up to 2 (safe brawl).
 nBrawl = GetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL");
 if (nBrawl == 1)
 {
 nBrawl = 2;
 SetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL",2);
 SignalEvent(GetArea(OBJECT_SELF),EventUserDefined(3000));
 }
 // Next, if the attacker wielded a weapon, set the brawl
 // state up to 3 (deadly). Note that torches and shields
 // are considered out of place in a brawl, and will set it
 // off.
 if (nBrawl == 2)
 {
 oAttacker = GetLastAttacker();
 oRWeapon = GetItemInSlot(INVENTORY_SLOT_RIGHTHAND,
oAttacker);
 oLWeapon = GetItemInSlot(INVENTORY_SLOT_LEFTHAND,
oAttacker);
 if (GetIsObjectValid(oRWeapon) ||
GetIsObjectValid(oLWeapon))
 {

 SetIsDestroyable(TRUE); // Otherwise, "real" death
 DelayCommand(15.0, SignalEvent(GetArea(OBJECT_SELF),
EventUserDefined(3100)));
 break;
 case 1011: // On Spell Cast At
 if (GetLastSpellHarmful()) // Do nothing if it was a nice
spell
 {
 // If the brawl level is 1 (peaceful), set up the
 // proper hostilities first.
 nBrawl = GetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL");
 if (nBrawl == 1)
 SignalEvent(GetArea(OBJECT_SELF),EventUserDefined(3000));
 // Next, set the brawl to deadly.
 SetLocalInt(GetArea(OBJECT_SELF),"BRAWL_LEVEL",3);
 SignalEvent(GetArea(OBJECT_SELF),EventUserDefined(3050));
 }
 break;
 }
}

The OnDeath script for the module:

NWScript:

// On Player Death Script: fm_ondeath
// Modified from NW_O0_DEATH.NSS
//
// Original Script by Brent Knowles
// Modification by Celowin
// Last Updated: 7/29/02
//
// For the most part, this script uses the default behavior.
// However, if the player is "killed" in the Singing Spider
// Tavern during a "safe" brawl, the player is given a
// message that they are merely unconscious, and will be
// woken up in 2 minutes.

void Raise(object oPlayer)
{
 effect eVisual = EffectVisualEffect(VFX_IMP_RESTORATION);
 effect eBad = GetFirstEffect(oPlayer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectResurrection(),oP
layer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(GetMaxHitPoi
nts(oPlayer)), oPlayer);
 //Search for negative effects
 while(GetIsEffectValid(eBad))

 if (GetEffectType(eBad) ==
EFFECT_TYPE_ABILITY_DECREASE ||

//
#include "fm_replib"

 {

 GetEffectType(eBad) == EFFECT_TYPE_AC_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_ATTACK_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_DAMAGE_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_DAMAGE_IMMUNITY_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_SAVING_THROW_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_SPELL_RESISTANCE_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SKILL_DECREASE
||
 GetEffectType(eBad) == EFFECT_TYPE_BLINDNESS ||
 GetEffectType(eBad) == EFFECT_TYPE_DEAF ||
 GetEffectType(eBad) == EFFECT_TYPE_PARALYZE ||

(eBad) == EFFECT_TYPE_NEGATIVELEVEL)

 //Remove effect if it is negative.
RemoveEffect(oPlayer, eBad);

 eBad = GetNextEffect(oPlayer);

 //Fire cast spell at event for the specified target
 SignalEvent(oPlayer, EventSpellCastAt(OBJECT_SELF,
SPELL_RESTORATION, FALSE));
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eVisual,
oPlayer);

void main()

 object oPlayer = GetLastPlayerDied();
 // Find where the player died.
 string sArea = GetTag(GetArea(oPlayer));
 // If the player "died" in the brawl, deal with it.
 if (sArea == "SingingSpiderTavern" &&
(GetLocalInt(GetArea(oPlayer),"BRAWL_LEVEL")==2))

 SendMessageToPC(oPlayer, "You have been battered into
unconsciousness, and will awaken shortly.");
 FloatingTextStringOnCreature("(Unconscious)", oPlayer,
FALSE);
 effect eRes = EffectResurrection();
 int nMax = GetLocalInt(GetArea(oPlayer),GetName(oPlayer));
 int nHeal = FloatToInt(IntToFloat(nMax)/2);
 effect eHeal = EffectHeal(nHeal);
 DelayCommand(120.0,
ApplyEffectToObject(DURATION_TYPE_INSTANT, eRes, oPlayer));
 DelayCommand(120.1,
ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal, oPlayer));
 DelayCommand(120.2, NeutralReputation(oPlayer));

 else // Do the standard stuff

 // * make friendly to Each of the 3 common factions
 AssignCommand(oPlayer, ClearAllActions());
 // * Note: waiting for Sophia to make

 GetEffectType
 {

 }

 }

}

{

 {

 }

 {

SetStandardFactionReptuation to clear all personal reputation
 if (GetStandardFactionReputation(STANDARD_FACTION_COMMONER,
oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 SetStandardFactionReputation(STANDARD_FACTION_COMMONER,
80, oPlayer);

 if (GetStandardFactionReputation(STANDARD_FACTION_MERCHANT,
oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 SetStandardFactionReputation(STANDARD_FACTION_MERCHANT,

 if (GetStandardFactionReputation(STANDARD_FACTION_DEFENDER,
oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 SetStandardFactionReputation(STANDARD_FACTION_DEFENDER,
80, oPlayer);

 DelayCommand(2.5,
PopUpGUIPanel(oPlayer,GUI_PANEL_PLAYER_DEATH));

NWScript:
// On Enter Script: fm_sspider_en
// This is the script for the area The Singing
// Spider Tavern.
//
// It does two things:
// 1. Initializes the brawl state to peaceful, if it
// hasn't been set.
// 2. Stores the pc's current hit points on enter.
//
// Written by: Celowin
// Last modified: 8/7/02
//
void main()

// Get the current brawl status.
int nBrawl = GetLocalInt(OBJECT_SELF, "BRAWL_LEVEL");
// If the status hasn't been set, set it to 1 (peaceful).
if (nBrawl == 0)
 SetLocalInt(OBJECT_SELF, "BRAWL_LEVEL", 1);
// Get the entering object, check if it is a pc, and if so,
// store the current hp.
object oPC = GetEnteringObject();
if (GetIsPC(oPC))
 SetLocalInt(OBJECT_SELF, GetName(oPC),
GetCurrentHitPoints(oPC));

 }

80, oPlayer);
 }

 }

 }
}

The OnEnter script for the tavern:

{

}

The OnUserDefined script for the area:

NWScript:

// User Defined Event: fm_sspider_ud
// This script defines all the major events for the
// Singing Spider Tavern.
// Most of the events deal with the bar brawl that
// happens there.
//
// Written by: Celowin
// Last modified: 8/7/02

 main()

int nCalledBy = GetUserDefinedEventNumber();
// Declarations up top, out of the switch.
object oCreature;
object oCreature2;
string sTag;
int nMax;
int nCurrent;
int nHealAmount;
effect eHeal;
int nIndex;
int bTest;
switch (nCalledBy)

 case 3000: // The brawl just started
 // Loop through, set the different groups hostile to each
 // other and the pcs.
 oCreature = GetFirstObjectInArea();
 while (oCreature != OBJECT_INVALID)

 if (GetIsPC(oCreature) || (GetTag(oCreature) ==
"SSPATRON"))

 oCreature2 =
GetNearestObject(OBJECT_TYPE_CREATURE,oCreature,nIndex);
 while (oCreature2 != OBJECT_INVALID)

 if (GetIsPC(oCreature2) || (GetTag(oCreature2) ==
"SSPATRON"))

 if (!GetFactionEqual(oCreature,oCreature2))
 AdjustReputation(oCreature,oCreature2,-100);

 oCreature2 =
GetNearestObject(OBJECT_TYPE_CREATURE,oCreature,nIndex);

 oCreature = GetNextObjectInArea();

#include "nw_i0_generic"
void
{

 {

 {

 {
 nIndex = 0;

 {

 {

 }
 nIndex++;

 }
 }

 }
 oCreature = GetFirstObjectInArea();
 // Now that they all hate each other, hhave them start
fighting.

OBJECT_INVALID)

 if (GetTag(oCreature) == "SSPATRON")
 AssignCommand(oCreature, DetermineCombatRound());
 oCreature = GetNextObjectInArea();

 case 3050: // The brawl just turned deadly.
 oCreature = GetFirstObjectInArea();

OBJECT_INVALID)

 if (GetObjectType(oCreature) == OBJECT_TYPE_CREATURE)

 if (!GetIsPC(oCreature))

 sTag = GetTag(oCreature);
 if (sTag == "SSPATRON")

 // Tell the Creature to equip a weapon at the next
chance.
 SetLocalInt(oCreature, "EQUIP", 1);
 // Calculate the healing amount
 nMax=GetMaxHitPoints(oCreature);
 nCurrent=GetCurrentHitPoints(oCreature);
 nHealAmount = FloatToInt(IntToFloat(nMax-nCurrent) /
2);
 // Heal the "fake" damage
 eHeal = EffectHeal(nHealAmount);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal,
oCreature);

 else

 // For pcs, healing but nothing else
 // Heals half the difference between current and what
the
 // pc had when entering the tavern
 nMax = GetLocalInt(OBJECT_SELF, GetName(oCreature));
 nCurrent = GetCurrentHitPoints(oCreature);
 nHealAmount = FloatToInt(IntToFloat(nMax-nCurrent) / 2
);
 // Apply the heal
 eHeal = EffectHeal(nHealAmount);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eHeal,
oCreature);

 oCreature = GetNextObjectInArea();

 while (oCreature !=
 {

 }
 break;

 while (oCreature !=
 {

 {

 {

 {

 }
 }

 {

 }
 }

 }
 break;
 case 3100: // Check for end of brawl
 oCreature = GetFirstObjectInArea();

 bTest=FALSE;
 while (oCreature != OBJECT_INVALID)
 {
 // Check... are there any creatures in combat?
 if ((GetHitDice(oCreature)>0)&& GetIsInCombat(oCreature))
 bTest=TRUE;
 oCreature=GetNextObjectInArea();

 if (bTest==FALSE) // If not, end the brawl
 SetLocalInt(OBJECT_SELF,"BRAWL_LEVEL",1);

NWScript:
// On Enter Script: fm_ssdoortrig
//
// This script attempts to keep npcs from chasing
// pcs out of the tavern.
//
void main()

object oPatron=GetEnteringObject();
if (!GetIsPC(oPatron))
 AssignCommand(oPatron, ClearAllActions());

Conclusion

Whew! At any rate, have fun with it, and I hope that you learned something about the
process of writing a complicated script. There is a lot of give and take, a lot of back and
forth. We’ll be doing a lot more with this in future lessons, so hold on to your hats.

 }

 break;
 }
}

Finally, paint a little trigger in front of the exit from the tavern, and attach the following
to the OnEnter:

{

}

Also, feel free to speak up with extensions to this, or bugs that I might have missed. I
know that the general procedure works, but there are always little things that get by. I’ve
tried to fix as many as I can, but I’m sure there is some oddball thing that I have missed.

Finally, I want feedback on the new format. It is always tough to try to explain the
“process” of doing something. I’ve done my best here, but if you have suggestions on
what I could do to make it better, speak up.

Huntsmans Guide To Henchmen (Part 1) - SOU / HOTU
Style

This tutorial aims to detail the points required to make your own custom henchmen in the
SOU / HOTU style. Follow these steps to get yourself your basic template, a standard
fighter with a normal package that will only level up in one class.

Creating The Basic Henchman.

1. Click on the word 'Wizards' at the top of your toolset and then click on the option
'Creature Wizard'.

2. On the wizard that opens click the 'NEXT' button at the bottom to move to the next
screen where you can pick the racial type of henchman/creature you are going to create.
Click on 'Human' in the list and then click the 'NEXT' button at the bottom.

3. You will notice on the next screen that you need to choose the class and level of the
character. In this case a fighter of level one is already selected in the box to the right, and
as this is what we are making clicking on the 'NEXT' button at the bottom.

4. On the next screen pick the gender of your henchperson, and choose a portrait for
them. When you're done click the 'NEXT' button.

5. This screen allows you to choose the faction that the henchperson will be a member of
before they are hired. Select 'MERCHANT' in the list and click the NEXT button again.

6. Give your henchman a name and click 'NEXT'.

7. This screen allows you to decide where on the custom creature palette the blueprint for
this character will be located. Whilst you can of course place them anywhere, it is often a
good idea to place your main characters together, for example in the 'Special : Custom 1'
section. When you have finished click 'NEXT'. You will then be shown all the stats for
your henchperson, check them and if they are ok click 'NEXT' again.

8. On the next screen click the box to 'Launch the creatures properties' and click the
'FINISH' button.

9. Click the tab marked 'SCRIPTS' and at the bottom click on the 'Load Script Set' button,
and in the window that opens click on the file called 'set_xp1_henchmen.ini' and click the
'OPEN' button. It’s possible the file’s called something else on your machine, but look for
one relating to henchmen.

10. You need a conversation for the henchman, since they are usually quite lengthy you
can download one from here. Unzip the hench_convo.erf file and place it in your
Neverwinter Nights erf directory. Then click on 'FILE' on the menu bar and select
'IMPORT' from the menu. In the window that opens, select 'hench_convo.erf' and click
'OPEN'.

4. If you look at around line 1364 you will see an entry that looks like this (it might be a
slightly different line number depending on if you have HotU or SoU installed.).

else if (sTag == "x0_hen_dor") { LevelHenchmanUpTo(oAssociate,
nLevel, CLASS_TYPE_CLERIC, 20); }

11. Click on the 'Basic' tab of your henchman’s properties and look at the bottom for the
'Edit' button. Don’t push that, but push the one to the left of it that looks like it has '...' at
the bottom of it. Look for the file called 'hench_convo' and select it and click ok. You
should see the name of the file in the conversation window now. You can click the 'Edit'
button now if you wish to edit the conversation, but you might be better off waiting until
you've read the tutorial on 'One liners and interjections'.

12. Click on the 'Classes' tab of his properties and look at the 'Default Package for
Autolevelup' window. Click the little arrow to the right and choose a package type for the
henchman. It doesn’t matter what you choose in this case.

You have now finished the basic henchman who will level up as a fighter, and will join
you when you talk to him (due to the conversation file you added) and will react as the
HotU henchmen do.

Multiclass Henchmen.

These are done exactly the same as you have done for the single class above, except that
you need to make a change to the 'X0_I0_HENCHMAN' include file. (Note. If you
imported the conversation file from above then you will already have a copy of
'X0_I0_HENCHMAN' to look at, edited to allow for henchmen with tags 'garey', 'olisha'
and 'hench_elvalith'.) Here is what you do.

1. Click on the word 'Tools' at the top of the toolset and then click on the option for
'Script Editor'.

2. With the script editor open click on the option at the top to 'Open an existing file' (hold
the mouse over the top row of buttons to see what they are).

3. Paste in the script name 'X0_I0_HENCHMAN' to the box marked 'Resource name' and
make sure to check the box marked 'All resources' at the left hand side. Then click the
'Open' button.

5. Now this may look a little complex to some, but to be honest it’s not and you don’t
need to fully understand it to actually use it. Look at the Tag of your henchman in your
henchman’s properties, and lets for this example say that it’s 'Henchman_Bob'. You need
to make your own entry to the file that is similar to the above, but using your henchman’s
tag, so yours would look like.

else if (sTag == "henchman_bob") { LevelHenchmanUpTo(oAssociate,
nLevel, CLASS_TYPE_CLERIC, 20); }

If you want to control how many henchmen your PC can take with him you will need to
make sure that the script that makes the henchman join (script called hire_henchman in
my example file) uses the function AddHenchman(); rather than HireHenchman(); and
then put the following line of script in the OnModuleLoad script slot of the modules
property sheet.

SetMaxHenchmen(5);

Just add your entry and save the script, but don’t change the name of the script at all.
(NOTE you must use lower case for the tag in the script even if your tag has capitol
letters in it.)

6. The CLASS_TYPE_CLERIC can be changed to whatever you want the second class
of your henchman to be. You can see what choices there are by looking at the Constants
list by clicking on the 'CONSTANTS' button to the right of the script editor window and
typing 'class_type' into the filter box at the top. So you might want the second class to be
a rogue, and so would use CLASS_TYPE_ROGUE instead. The number 20 at the end of
the line is the maximum level you want the henchman to level up in the second class that
you are setting with this function in the script.

7. Lastly to make sure the henchman levels up when you do during game play click on
the word "Edit" at the top of your toolset, and choose the option "Module Properties", and
click on the "Events" tab. In the script slot OnPlayerLevelUp make sure the script name
"x1_playerlevelup" is added there.

Controlling the amount of henchmen you can have.

The number in brackets is where you change it to however many henchmen you want the
player to be able to hire. In this case 5.

If you do use more than two henchmen you will also have to make a change to the
DoRespawn custom function that is listed in the x0_i0_henchman include at around line
995. This custom function controls the rehiring of the henchmen after they have died, and
by default it uses HireHenchman(); which is no good as you would automatically fire a

henchman when the third one tried to rejoin. So replace HireHenchman() with
AddHenchman(); and that will fix it.

Trouble Shooting

It is possible that using the scripts from SoU on the henchman that you might find weird
things happen when the henchman dies. If you find this you might want to use the XP2
(HotU) scripts for OnDeath and OnSpellCastAt on the henchman. These scripts have the
names x2_hen_death and x2_hen_spell and if you use these two scripts along with the
ones you applied earlier in creating the henchman will cause you to have to use a
resurrection spell or raise dead spell to revive the henchman.

Huntsmans Guide To Henchmen (Part 2) - One Liners,
Interjections and module transfers.

This tutorial will be somewhat easier to follow if you already have the conversation file
used in the 'Henchmen - SOU / HOTU Style' tutorial. If you don't have it, you can
download the file from here.

3) In the conversation file you need to add a script to the text appears when tab of each
Non-Random popup line. The script for line one is 'x0_d2_hen_line1' and for PopUp2 it
needs 'x0_d2_hen_line2' and so on. Note the scripts only run up to 'x0_d2_hen_line52'
though you could add more if you needed to.

Random One Liners work in a similar way to the non-random ones, but you don't need to
change anything on the keytag of the trigger and use different scripts in the conversation.
Before you can do any random one-liners or interjections though you will need to make a
change to your henchman’s OnSpawn script. If you look at their onSpawn script you will
see code that looks like this.

A one liner, when it comes to a henchman, is when the henchman says something short
requiring no response from the player. This usually occurs when the henchman crosses a
trigger that you have laid down. Interjections are similar except that the henchman will
actually start a conversation with the PC, rather than waiting for you to want to talk to
him. It allows for a little more interaction from your henchmen companions.

One Liners - Non-Random.

In the conversation file you imported you will see a lot of single line NPC conversation
lines, such as "We should be wary I think, all manner of nasties could hide in the
shadows in here.", these are the one liners.

1) To get these to work you need to lay down one of the XP2 One_Liner, Non-Random
triggers.

2) Open the properties of the trigger and go to the advanced tab. Change the Keytag to
the number of the popup line that is to appear. So if it's the first line you want to appear
put 1 in the keytag line.

4) Each one liner should have 'x0_d1_hen_noline' in the Actions Taken script box to
clear the one liner.

One Liners - Random

else
if (sMyTag == "henchmans_tag")
{
SetNumberOfRandom("X2_L_RANDOMONELINERS", OBJECT_SELF, 5);
SetNumberOfRandom("X2_L_RANDOM_INTERJECTIONS", OBJECT_SELF, 2);
}

1) Lay down an XP2 One-Liner, Random trigger.

That’s all there is to the random one-liners.

Interjections work in pretty much the same way as the non-random popups above.

4) If the player chooses to continue the example conversation, the henchman has six
possible conversation lines he might say. Each line has a script on the 'Text Appears
When...' and 'Actions Taken' tab. The scripts on 'Text Appears When...' are in order and
look like 'x0_d2_hen_inter1' or 'x0_d2_hen_inter2' etc and the script in 'Actions Taken' is
ALWAYS x0_d1_hen_inter0 so as to reset the interjection and make sure it doesn’t do it
more than once. Note the script numbering runs up to 'x0_d2_hen_inter9' and then
'x0_d2_hen_inte10' to 'x0_d2_hen_inte50'.

All you need to do is add in your own section of code like that, and place your
henchman’s tag where it says to in the above code. Change the number 5 and 2 to match
the numbers of random one-liners and interjections in your conversation file for that
henchman.

Now here is how to do the random one-liners.

2) In your conversation editor write your random one-liners and then use
x2_d2_hen_rln001 script in the text appears when of the first line and then
x2_d2_hen_rln002 for the second and so on.

Interjections - Non-Random.

1) Lay down one of the XP2 Interjection, Non-Random triggers where you want the
interjection to happen.

2) As with PopUps change the Key Tag to match the Interjection number you’re using.

3) Whichever line of conversation you want to be used when the player walks over the
trigger should have the script 'x0_d2_hen_inter' placed in the 'Text Appears When...'
script box for the line. In the conversation file imported earlier this line is the one that
goes "Wait , I would have a word with you if I may."

Interjections - Random.

1) Lay down an XP2 Interjection, Random trigger.

That is about all for the random interjections, but check out the conversation file in the
example module for interjections at the bottom of this page to see how it all works in
game and in a conversation file if you need to see it in action to help explain it.

This is for when you have two or more henchmen with you and you want them to talk
between themselves about something. It's fairly simple to do and similar to the random
interjections we have already done, except that you will have to make your own scripts.

2) Write in one of your henchman’s conversation files what you want him to say to one
of the other henchmen.

4) In the text appears when of the line you just wrote place the script x2_turnoffbanter
and the script x2_hen_try_other goes in the Actions Taken script slot.

#include "x2_inc_banter"
int StartingConditional()
{

These work pretty much the same as the random popups do in that you don't need to
change the keytags of the trigger.

2) Add your random interjections below the non-random interjections you did above and
then use the script x2_d2_hen_int001 for the text appears when tab of the first line and
x2_d2_hen_int002 for line two, and so on for the rest of the random lines you do.

Party Banter, or Party random Interjections

1) Lay down an XP2 PARTY Interjection, Random trigger where you want the
interjection to happen.

3) Write another OWNER line below the conversation you just wrote with the text "------
- This line must be placed at the end of inter-party banter ---------"

5) In the text appears when of the henchman’s interjection you need to write a custom
script that checks to see if the other henchman you want this henchman to talk to is in the
party as well. An example of the type of script you need is below, just put your the tag of
the henchman you're checking for where marked.
Also you will see that there is a 1 after the henchman tag place in the script. If you have
more than one possible random line for the henchman you are trying a random banter
with then that number is what you change. So for line one you use 1 and for the second
possible banter you change that to 2.

if (TryBanterWith("henchman_tag_here", 1) == TRUE)
{
return TRUE;
}
return FALSE;
}

That is all you need for the banter, but if you need to see examples of how it works then
download the below listed module that has examples of the henchmen doing all the above
interjections and popups. SO you can see it in action in the module and then look at the
conversation file in your toolset.

If you only want an interjection to fire if part of a quest has been done you would need to
set an INT to the module first of all when whatever parameter has been met to allow the
pop/interjection to fire. So you would need to have some idea of how to set INT's for this
really, but if you do then all you need to do is use something like the below code in the
OnEnter script of the XP2 popup/interjection trigger you are using.

void main()
{
object oEnter = GetEnteringObject();
if(GetLocalInt(GetModule(), "WHAT_EVER_NAME") == 1)
{
ExecuteScript("x0_evt_trigger", OBJECT_SELF);
}
}

SO what this does is check if a local int has been set to the module, and if it has then the
script will fire when the henchman walks into the trigger and you will get the popup or
interjection. If the INT hasn't been set then the script won't fire and no popup will occur.

That should about cover interjections and popups, as you can pretty much see how they
need to be done from the popup and interjections example module, which can be found
by CLICKING HERE

Only firing an interjections or Popups when part of a quest is done etc.

.

The zip file contains a module file that is HotU 1.61 compliant and an ERF file of the
area for those that don't have HoTu but do have the 1.61 patch. You should be able to
import it if you don't have HotU, but you may need to add the script to set the
maxhenchmen to 2 in the OnModuleLoad (check lesson one on how).

Moving henchmen with you from one module to another.

1) Place the below code in the OnModuleLoad script slot of BOTH of your modules.

void main()
{
SetLocalString(GetModule(), "DB_GRAIL_WAR", "HenchMen");
}

To move a henchman with you from one module to another you need to set up a
campaign database on both of the modules. Here is how you do that.

2) Place the below code in the OnEnter script of a generic trigger just before you jump
the PC to the new module.

#include "x0_i0_henchman"
void main()
{
object oPC = GetEnteringObject();
StoreCampaignHenchman(oPC);
}

3) Place the below code in the Area OnEnter script of the first area that the players enter.

#include "x0_i0_henchman"
void main()
{
object oPC = GetEnteringObject();
if(GetLocalInt(oPC, "LOAD_HENCHMAN") == 1)
return;
if(!GetIsPC(oPC))
return;
RetrieveCampaignHenchman(oPC);
SetLocalInt(oPC, "LOAD_HENCHMAN", 1);
}

That’s all there is to it if you're only going to be using a single henchman, but if you're
intending the players to have more than one henchman you will need to do some code
editing due to the fact bioware code only covered one henchman with their custom
function, and while I will try to explain it clearly it's not as easy as previous bits.

If you look at around line 1096 of the x0_i0_henchman include file you will see a section
of code that looks like this.

void StoreCampaignHenchman(object oPC)
{
object oHench = GetHenchman(oPC, 1);
if (!GetIsObjectValid(oHench)) {
DBG_msg("No valid henchman to store");
return;
}
DBG_msg("Storing henchman: " + GetTag(oHench));
int ret = StoreCampaignDBObject(oPC, sStoredHenchmanVarname,
oHench);
if (!ret) {
DBG_msg("Error attempting to store henchman");
} else {
DBG_msg("Henchman stored successfully");
}
}
// Call this function when a PC enters a sequel module to restore
// the henchman (complete with inventory). The function
// StoreCampaignHenchman must have been called first, and both
// modules must use the same campaign db. (See notes in
x0_i0_campaign.)
//
// The restored henchman will automatically be re-hired and will
be
// created next to the PC.
//
// Any object in the module with the same tag as the henchman
will be
// destroyed (to remove duplicates).
void RetrieveCampaignHenchman(object oPC)
{
location lLoc = GetLocation(oPC);
object oHench = RetrieveCampaignDBObject(oPC,
sStoredHenchmanVarname, lLoc);
// Delete the henchman object from the db
DelayCommand(0.5, DeleteCampaignDBVariable(oPC,
sStoredHenchmanVarname));
if (GetIsObjectValid(oHench)) {
DelayCommand(0.5, HireHenchman(oPC, oHench));
object oHenchDupe = GetNearestObjectByTag(GetTag(oHench),
oHench);
if (GetIsObjectValid(oHenchDupe) && oHenchDupe != oHench) {
DestroyObject(oHenchDupe);
}
} else
{ DBG_msg("No valid henchman retrieved");
}

You need to replace that section of code with the below code. This will then make it work
for whatever your maxhenchman setting is. The max henchman allowed in a module is at
line 75 of the x0_i0_henchman file, which is "int X2_NUMBER_HENCHMEN = 2;" just
change the number 2 to whatever amount of henchmen you want to allow. So if your

module will be letting PC use 5 henchmen the line should be int
X2_NUMBER_HENCHMEN = 5;

void StoreCampaignHenchman(object oPC)
{
object oHench;
int iSlot, iMax = GetMaxHenchmen();
for (iSlot = 1; iSlot <= iMax; iSlot++)
{
oHench = GetHenchman(oPC, iSlot);
if (!GetIsObjectValid(oHench))
DBG_msg("No valid henchman to store");
else if (StoreCampaignDBObject(oPC, "Henchman" +
IntToString(iSlot), oHench))
DBG_msg("Henchman " + GetName(oHench) + " stored successfully");
else
DBG_msg("Error attempting to store henchman " + GetName(oHench));
}
}
// Call this function when a PC enters a sequel module to restore
// the henchman (complete with inventory). The function
// StoreCampaignHenchman must have been called first, and both
// modules must use the same campaign db. (See notes in
x0_i0_campaign.)
//
// The restored henchman will automatically be re-hired and will
be
// created next to the PC.
//
// Any object in the module with the same tag as the henchman
will be
// destroyed (to remove duplicates).
void RetrieveCampaignHenchman(object oPC)
{
location lLoc = GetLocation(oPC);
object oHench, oDupe;
int iSlot, iMax = GetMaxHenchmen();
string sHench;
for (iSlot = 1; iSlot <= iMax; iSlot++)
{
sHench = "Henchman" + IntToString(iSlot);
oHench = RetrieveCampaignDBObject(oPC, sHench, lLoc);
DelayCommand(0.5, DeleteCampaignDBVariable(oPC, sHench));
if (GetIsObjectValid(oHench))
{
DelayCommand(0.5, HireHenchman(oPC, oHench));
oDupe = GetNearestObjectByTag(GetTag(oHench), oHench);
if (oDupe != OBJECT_INVALID) DestroyObject(oDupe);
}
else
DBG_msg("No valid henchman retrieved");
}
}

That should cover most things relating to using the SoU and HotU style henchmen, but I
have little doubt I have forgotten a few things in which case you will have to catch up
with myself or one of the other people on the bioware scripting forum to help you out, or
work it out for yourself. :)

Trouble Shooting

Some of the subjects in this lesson mean changing the x0_i0_henchman file. Changing
include files isn't always the best idea as it can lead to conflicts if Bioware update these
include files in future expansions or patches. It can be best to save the changed include
under a new name and then use that name for the include file of any scripts. So if you
wanted you might resave the "x0_i0_henchman" script as "my_hench_include" and then
in any script that you wanted to reference things from that script you would put the below
above the void main of any script.

#include "my_hench_include"

Anyway, you don't have to do that, but it can be a good idea to do it that way to avoid
possible conflicts. I hope this all was a help to people and if it was you're welcome to
build a nice tasteful temple in my honour and pray to me as your god. :)

Introduction to struct
By Jassper

This tutorial assumes you have basic knowledge of scripting, functions, and include files.
Structs are a more advanced topic and it is recommended you learn basic scripting before
attempting to build a struct.

The Word Struct is short for "structure". By definition;
struc•ture
1. Something built or erected; a building, bridge, framework, or other object that has been
put together from many different parts
2. Orderly system of parts; a system or organization made up of interrelated parts
functioning as an orderly whole

This is much how a struct is in coding, it is a data type (variables) that hold values of
many other data types. It is a "structure" formed by many different variables.

Lets take a look at a struct that you are probably familiar with already, GetLocation().
This function returns the location of an object, that location actually contains 3 parts. The
Area of the location, the vector of the location, and the facing of the object you are
getting the location from. So GetLocation() contains a variable of data type object, a
variable of data type vector, and a variable of data type float. But wait, a vector has 3
parts, x ,y, and z. This is because a vector is also a struct, containing 3 variables of data
type float.

To put it a simply way, a struct is nothing more than several variables placed into a single
variable called a struct.

To make our own struct, we first need to declare the variables used within the struct just
as we declare normal variables in side a void main. Or similarly, we need to draw the
blue print to build the structure.

For this tutorial, we will construct a struct variable to hold some data about the PC. For
this we will need the Players Name, The Players CD Key and the Players current Level.
So lets layout our blueprint.

Open the script editor and comment out the void main () and the two {}’s. We won’t
need those as this will become our include scripts. I say, comment instead of delete
because of a trick I’ll show you later.

struct PCInfo
{
 string name;
 string key;
 int level;
};
//void main()
//{}

Save the file as "my_struct".
"Struct" is the data type, "PCInfo" is the variable name. The 3 variables inside the {}
name, key, and level are the 3 bits of information that we are going to include in this
single variable "PCInfo".

Notice the ";" after the last "}". This is important because remember, you are declaring a
variable. So just as an int variable, int I = 1; you need a ; after a struct variable
declaration as well.

Now that we have our blue print, we need a way to declare values for each variable inside
the struct. For that we need a "structured function" or "Struct Funct" (say that 5 times
fast). Basically, a structured function is nothing more than a custom function that places
the data we need into the struct.

For those that have built your own functions, this will look somewhat familiar to you.
The syntax for a normal function is;
Return_value Function_Name [(parameters)]
A structured function syntax is;
Return_Value Variable_Name Function_Name[(parameters)]

For example, a normal function might be;
int My_Function(object oPC)
int is the Return_Value, My_Function is the Function_Name, and (object oPC) is the
parameters.

We have already defined the variable in the script above, so when making a struct
function we need to include the variable name so nwscript knows which struct variable
your talking about. Lets call the function GetData, so following the sysntax we would
enter this;
struct PCInfo GetData(object oPC)
So struct is the Return_Value, PCInfo is the Variable_Name, GetData is the
Function_Name and (object oPC) is the parameter.

In the same file we just created, add our structured function

struct PCInfo
{
 string name;
 string key;
 int level;
};
struct PCInfo GetData(object oPC)
{
}
//void main()
//{}

Before we can get any data we need, we must declare another variable name that will
hold the information that we are going to return to the script, or a return value. Lets call

this variable "ValToReturn". So add this line to your struct function;

struct PCInfo ValToReturn;

Now we need to plug in our values but before we do that, I need to introduce you to the
dot operator. The dot or period "." Is used to tell the struct that there is more information
after the ValToReturn variable. Think of it as a whole number with a remainder. For
example, 1.5 is telling us that the value is more than 1, but less than 2. Lets plug in our
values, then I will explain more. Add the following these lines, now your function should
look like this:

Look at the variable ValToReturn as the "whole number" and the ".name" as the
remainder. Notice that the name, key, level, are the same variables that we laid out in our
struct PCInfo blue print. What this does is make the variable ValToReturn equal to the
name, key, and level, all at the same time.

Now to show you my little trick, click the "save" button. You should not get any compile
error, in fact you shouldn’t get any message at all. So did that file save correctly? We
won’t know unless we compile it.

Now uncomment the void main() and the 2 {}’s then click the save button again. You
should get the following error:
ERROR: NOT ALL CONTROL PATHS RETURN A VALUE
The void main() forces the struct function to compile as a normal script. This is a easy
way to detect typos before you try to include the file in another script. The error produced
is because we didn’t enter a return for the function. Lets add that now,

struct PCInfo
{
 string name;
 string key;
 int level;
};
struct PCInfo GetData(object oPC)

struct PCInfo
{
 string name;
 string key;
 int level;
};
struct PCInfo GetData(object oPC)
{
 struct PCInfo ValToReturn;
 ValToReturn.name = GetName(oPC);
 ValToReturn.key = GetPCPublicCDKey(oPC);
 ValToReturn.level = GetHitDice(oPC);
}

//void main()
//{}

{
 struct PCInfo ValToReturn;
 ValToReturn.name = GetName(oPC);
 ValToReturn.key = GetPCPublicCDKey(oPC);
 ValToReturn.level = GetHitDice(oPC);
 return ValToReturn;
}

void main()
{}

#include "my_struct"
void main()
{
 object oPC = GetEnteringObject();
 struct PCInfo sINFO = GetData(oPC);
}

Save it as "my_script". Everything at this point should compile without any errors. The
struct PCInfo is telling the script which struct to use. In this case, the PCInfo structure.
sINFO is the variable name we are calling this variable. Just like any other variable and
that it is equal to our function GetData().

In our include file, we packed 3 variables into one called ValToReturn using the dot
operator so to extract that information, we need to use the dot operator again, i.e.,
sINFO.name, sINFO.key and sINFO.level. Lets send this information to the Player so we
can see it. Add the following so your script looks like this;

#include "my_struct"
void main()
{
 object oPC = GetEnteringObject();
 struct PCInfo sINFO = GetData(oPC);
 SendMessageToPC(oPC,sINFO.name);
 SendMessageToPC(oPC,sINFO.key);
 SendMessageToPC(oPC,IntToString(sINFO.level));
}

Remember that level is a int variable, so it must be converted to a string just as any other
int variable before we send it as a message. Save the script and place it in the OnEnter of
your starting area. Now test your module. In the chat window you should see your
character name, your CD key, and your current level.
Note: the CD key will only be valid if you load the module up in nwserver first, then
enter the game. Other wise you will only see the character name and your current level.

Resave the file and the error should go away. Don’t forget to re-comment out the void
main() part and save the file again. We now have our struct include file and we will use it
in a script.

Open a new script window and above the void main() include the file we just created. We
are also going to call the function in that file;

Congratulations! You just made your first struct.

II.SOU Misc Updates
 (may be overridden by HOU Update)

Get2daString and Loops

There seems to be some confusion about Get2DAString and loops, so I think I clear them
up a bit.

Get2DAString *should* not be used in loops, because it is a *slow* function. Looping
through a 50 row 2DA can take several seconds, possibly very few rows (10) may be ok.

Get2DAString loads data dynamically into the game, meaning you can change the 2da
while the game is running and calling the function will always return the current values
from the 2da, which helps quite a lot if you are testing things, lets say a random treasure
table.

There are several techniques you can use to avoid using 2DAs in loops, and I am sure the
community will come up with some even more ingenious ideas

By Georg Zoeller

Getting the maximum number of entries in the 2da:

If you want to use a 2DA to randomize things (i.e. a encounter table for a custom spawn
system), you could use the row 0 field of a column to state how many rows your 2da has.
Store the number onto a local integer (i.e. MaxRowsCol1 MaxRowsCol2). Run this
function OnModuleLoad to initialize .

 example my_2da
 Col1 Col2
0 3 1 <--- 3 entries in col0, 1 in col2
1 Text Text
2 Text2 ****
3 Text3 ****

Whenever you want to spawn a random encounter, you can use Random(MaxRows) -1 to
determine a line within the 2da from which to read.

Some more information:

- The function returns "" for "****" entries in the 2da
- The column headers are case sensitive, the 2da name is not
- You probably should prefix your own created 2das so you can distinguish them from
the ones that ship with the game. Avoid using the prefix des_ we use it internally for
design created 2das
- The function is very powerful to get information about the game rules that are not
exposed via a scripting command.

- The function will return "" on any error (not existing 2da, row, column), so avoid giving
empty rows a specific meaning in your code

Example: You want to know if a weapon does bludgeoning damage?

// return TRUE if weapon does bludgeoning damage
// Uses Get2DAString, avoid to use in loops!
int GetDoesBludgeoningDamage(object oWeapon)
{
 int nBaseType = GetBaseType(oWeapon);

}

string sMonster =

 return
(StringToInt(Get2DAString("baseitems","WeaponType",nBaseType) ==
2);
 // 2 = bludgeoning

... or want that direly missed GetWeight Function? .. check the TenthLbs row in
Baseitems.2da

It is probably a good idea to state a warning about not using the function in loops in its
comments, because it uses Get2DAString internally.

I am sure we will see some community created include files with the most useful
functions pretty soon

- Maximum length for a 2da name is 16 chars. If you go beyond, the function will fail
without warning

- If you suspect that you would need data read once from a 2da later, you can implement
simple caching to speed up future access to the data

Example

monster ResRef from a 2da driven random encounter system:

my_encounters.2da
 MonsterResRef
0 3 <--- number of resrefs
1 nw_balor
2 nw_deer
3 nw_dog

Lets assume you built a random encounter system as described above.

// code sample without caching
int nRow = Random(nMaxRows)+1;

Get2DAString("my_encounters","MonsterResRef",nRow);
//Get a monster from the 2da
CreateObject(...); //spawn the monster

Now lets add simple caching to the same code to avoid calling Get2DAString :

int nRow = Random(nMaxRows)+1;
string sMonster;
// get the monster from the cache
sMonster = GetLocalString(GetModule(),"Monster" +
IntToString(nRowNumber));
if (sMonster == "")
{
 // cache miss
 sMonster = Get2DAString("my_encounters","MonsterResRef",nRow);
 //cache the monster on the module
 SetLocalString(GetModule(),"Monster" + IntToString(nRow),
sMonster);

This way Get2DAString gets only called the first time you spawn an a certain monster.
Any subsequent call will be handled by the stored variable which is significantly faster.

Of course you pay for this optimization by forfeiting the ability to change 2DAs outside
the game while the module is running, but you probably wouldn’t do this for a random
encounter system anyway

}
 CreateObject(...);

Have fun tinkering around with this, Get2DAString is an extremely powerful tool

The SoU Treasure System
By Georg Zoeller

It is documented extensively in x0_i0_treasure.nss

Basically you just need to place down chests and put items in them. There are module
and area specific chests as well as monster race specific chests.

You find these chests in the toolset palette, their tags start with x0_

You can examine the official SoU campaign to learn more about using them

excerpt:

//:://
//:: X0_I0_TREASURE
/*
Include library for XP1 treasure generation system.
--
MAIN CONCEPT:
The module builder creates some base containers and fills them
with instances of the treasure items that s/he wants to appear
randomly. The actual treasure containers then randomly pick from
the contents of these base containers to generate their own
contents.
--
SETUP:
Create four module-wide base containers (for low, medium, high,
and unique treasure items) and place them anywhere in your
module. Make sure that they are in locations inaccessible to the
players, though!
Give these module-wide base containers these tags (or just use
the
blueprints):
 X0_MOD_TREASURE_LOW - low-level treasure
 X0_MOD_TREASURE_MED - medium-level treasure
 X0_MOD_TREASURE_HIGH - high-level treasure
 X0_MOD_TREASURE_UNIQ - unique treasure items
Fill the instances of these base containers with appropriate
treasure
for your module.
For any areas where you want finer control over the treasure,
simply create additional base containers (you don't need all four
-- any one that you skip will fall back to the module-wide
version)
and place them in the area. Give them these tags (same just
without
the "MOD"):
 X0_TREASURE_LOW - low-level treasure
 X0_TREASURE_MED - medium-level treasure
 X0_TREASURE_HIGH - high-level treasure

 X0_TREASURE_UNIQ - unique treasure items
For any treasure container, use one of the following scripts
as BOTH the OnOpen/OnDeath handler:
Any Treasure: x0_o2_any{low,med,high,uniq}
Books (book, scroll): x0_o2_book{low,med,high,uniq}
Potions: x0_o2_potn{low,med,high,uniq}
Armor (armor, shield, helm, boots, etc):
x0_o2_arm{low,med,high,uniq}
Weapon: x0_o2_weap{low,med,high,uniq}
Gold: x0_o2_gold{low,med,high,uniq}
Others may also be added.
MONSTER/NPC TREASURE

If you would like to have special monster treasure (monster
treasure
defaults to low treasure otherwise), you can also add any of
these
base chests:
X0_TREASURE_MONSTER_<monster tag> - treasure found on monsters
with
 the given tag. This will
strip off
 any trailing digits, so for
instance,
 NW_KOBOLD1, NW_KOBOLD2,
NW_KOBOLD005
 would all end up checking the
chest

X0_TREASURE_MONSTER_NW_KOBOLD.
X0_TREASURE_MONSTER_<racialtype> - treasure found on monsters of
the given
 racialtype. Ex:
 X0_TREASURE_MONSTER_ELF
 X0_TREASURE_MONSTER_UNDEAD
 The spelling matches that used
in the
 RACIALTYPE_* constants.
X0_TREASURE_MONSTER - generic treasure found on all
monsters/NPCs
 in the module.
To use monster treasure, use the default OnSpawn script
nw_c2_default9
or modify the OnSpawn script as follows:
- Replace #include "nw_o2_coninclude" with #include
"x0_i0_treasure"
- Replace GenerateNPCTreasure(); with CTG_GenerateNPCTreasure();
- If you prefer to generate monster treasure from the general
chests,
 you can also add a parameter to CTG_GenerateNPCTreasure(); to
 specify whether the treasure generated should be
low/medium/high/uniq.
 See the comments to that function for details.
--
DETAILS:
Each treasure container has a script that looks for the
nearest object with the tag matching the type of

treasure.
When the treasure-generating scripts look for a container,
they will take the nearest container in the local area, then
fall back to the module-wide container. If no container can
be found, they will fall back on the standard random treasure
generation system.
The treasure generation system will randomly select from
1-3 items from whatever items are in the nearest container.
Each item has a 50/50 chance of being replaced by a random
amount of coin based on the standard treasure generation
system.
IMPORTANT NOTE ON PROBABILITY:
Each item in the chest has an equal probability of being
selected. To control the probability of any given item
appearing, simply place multiple copies of it in the container.
Because of the stacking rules, there is a slight modification
to this. Ammunition/throwing weapons will have a probability
equal to the number of stacks in the chest, since the max stack
size is the default stack size. Potions, scrolls, and gems,
however,
will be counted individually to determine the probability even if
they are stacked, since their default stack size is 1.
To control the size of the stack that actually gets created, you
should create a blueprint that has the appropriate stack size.
You can adjust the stack size of the instance you stuff into the
base container to whatever you want afterwards; the blueprint's
stack size will control what
There are scripts that will cause only specific types of items
to be selected from the container of the specified level --
eg, only books/scrolls, or only weapons or armor, etc -- useful
for bookcases or for weapon racks, & so on.
The unique treasure chest will only place each item in the
chest once, will never place more than one item, and will
never replace the item with coin.

III. HOU Misc Updates
Global Switches

HoU Variables

NWN:HotU has a selection of variables that can be set to override the default
behavior/rules in the game.
Examples include:
- Activating/Deactivating the Use magic device skillroll for rogues
- Toggle if the WalkWaypoints command makes creatures cross area borders
- Enable/Disable the New Item creation feats
- Modify a creatures AI behavior (i.e. %of magic use, compassion, offense, etc)
- and a lot more

All these options are documented in a file called x2_inc_switches.nss. To see an example
on how to configure them for your module, open the file x2_mod_def_load.nss which is
automatically attached to the OnLoad slot of each new module created with Hordes of the
Underdark. I will add more detailed information about how to write your own additions
to the combat AI and how to modify the default AI behavior later in this thread.

Dynamic Item Properties

To get started with dynamic item properties, I suggest the file x2_inc_itemprop.nss
which holds wrapper functions for most of the common tasks you will encounter when
dealing with dynamic item property scripting. The file is reasonably well commented so
an experienced script shouldn't have too much trouble to find out what's going on.

To see examples of how to add item properties to an item, I suggest the new HotU
spellscripts for i.e. magic weapon (x2_s0_magcweap.nss), holy sword
(x2_s0_holyswrd.nss), or flame weapons (x2_s0_x2_s0_flmeweap.nss)

You may want to have a special look at the function IPSafeAddItemProperty which is the
universal wrapper function used throughout the HotU Spellscripts when it comes to
adding itemproperties. It takes care of most problems that can arise (i.e. preventing a
temporary item property from removing a permanent one, etc). I will post code examples
about this later.

On Hit Cast Spell

With HotU, you can create your own OnHit spells for weapons and armor, in addition to
the spells already available in the toolset (much like the CastSpell:Unique Power ability).

In order to add your own custom OnHitCastSpell to a weapon, you first need to add the
OnHit: Cast Spell - Unique Power property to the weapon or armor in question.
Then pen and modify the file x2_s3_onhitcast.nss in your module. The file is well

commented so you should have no trouble to figure out what to do. I will post some code
examples about this topic later.

Item Event Routing

Any new module created with the Hordes of the Underdark toolset has a couple of default
script attached to its events. These default script allow routing of item specific events into
a single file, so you need to have only one script file that contains all the scripts for your
items.

Note that this feature only works if you have the default xp2 module scripts on your
module (or added the appropriate code to your custom scripts).

To get started, have a look at the file x2_it_example.nss, it should be well enough
commented to get you started on that topic. I will add a short example on this topic later.

You will need to replace your secret doors!

1) Remove all "Hidden Wall Door Trigger"'s
2) Place a trigger in front of the wall where you want the door to appear. Name it's tag
whatever you like! (Note there is special trigger for this under "NEW TRIGGERS)
Also note there are three types of secret wall doors - Wood Stone and metal)

Example: SecretDoor1A

3) Now create a waypoint in the location you want the door to appear. Name it's tag with
the prefix LOC_ follow by the tag name of the trigger you created.

Example LOC_SecretDoor1A

NOTE: Watch out! Make sure the arrow is pointing in the direction you want the PC to
walk through. If the arrow is pointing towards you, the door will appear backwards and
will not open.

4) Finally, Place another Waypoint in the spot where you want the PC to appear after
going through the secret door. The tag name for this is prefixed by DST_ and then the tag
name of the trigger.

Example: DST_SecretDoor 1A

Note: Do not place the DST_ waypoints to close to the wall. When doing back to back
secret doors, a PC can get stuck against the door. A good inch away from the wall seems
to be good.

Post-SOU Doors – Old ones don’t work

5) Special Note: You can adjust the DC of detecting a door by changing the number in
the KEY TAG space under the TRIGGERS properties.

Hope this helps people! I know I spent hours trying to get my secret doors to work right.

Script Caching

How to decide which scripts to cache?

When you try to decide which scripts to use with the new script caching feature (module-
>properties>cached scripts) you should know how it works:

- The function allows to cache compiled scripts (.ncs) into RAM, thus speeding up their
execution time

- Since it caches compiled scripts, it makes no sense to cache include files, as they are not
compiled

- How many scripts you should/can cache is dependent on your computers RAM. Please
keep in mind that this is stored on the module, so if you create modules for the public,
you should remember that many people's computers may have less RAM than you have
at your computer

- It makes sense to cache the most used scripts in your campaign, so heartbeat scripts,
spawn in scripts for often-used monsters, etc make sense to cache, while caching an
OnRest event script may not yield any noticeable performance increase in your module.

Hope that helps

Fun With Petrify

By Georg Zoeller

(Syrsuso)

I was playing around in the scripts and I found two versions of a petrifaction effect
function.

Look in x0_i0_petrify

One applied a stone effect and the other applied a wood effect.

From reading these - I would draw two conclusions:

1) The normal 'petrify' function does not apply a separate vfx and thus I would assume
that the base petrify effect applies this visual effect automatically. (On the other hand,

The wooden look applies a barkskin vfx on top of the petrifaction effect).

2) We will soon be inundated with characters and creatures being turned to wood and
stone.

You might be able to get back to the normal appearance of the creature by applying some
other visual effect (like Barkskin) and then quickly dispelling it. Given how that type of
thing usually works, odds are you will end up with the petrifaction in place but without
the appearance. Give it a shot.

void main()
{
object oPC = GetEnteringObject();
object oLiz = GetObjectByTag("Liz");
effect eStone = EffectPetrify();
AssignCommand(oLiz,ActionPlayAnimation(ANIMATION_FIREFORGET_TAUNT
));
DelayCommand(1.0,AssignCommand(oLiz,ApplyEffectToObject(DURATION_
TYPE_PERMANENT,eStone,oLiz)));
}

Adding Crafting Materials to Your Campaign
In order to allow your players to use their crafting skills, you need to make sure that
crafting materials are available to them.

The easiest way to do that is to add the script x2_o2_dead.nss to the OnDeath event of
destroyable placeables and Doors, like it is used in the Official HotU campaign. This will
cause the placeable/door to drop some crafting materials if it is destroyed by a character
skilled enough in crafting (craft armor or craft weapon 5+) to salvage the material.

The materials that are dropped by this script are defined
in des_crft_drop.2da where the row index in that file corresponds to the appearance type
of the placeable/door/creature calling the script. You do not need to distribute a
customized version of this file if you make any changes to it (i.e. via hakpak), as the
script using the file is server side only (this way you can hide your drop tables from your
players).

The default death scripts will take care of dropping creature related material (i.e. hides,
feathers or metal for certain types of golems).

How to add more dyekits

Horde of the Underdark comes with about 15 different colors for each of the 3 dyetypes
(leather, cloth, metal). Of course this won't be enough for a lot of people, so here a quick
guide on how to add a new dyekit.

1. Create a new misc. small item with the dyekit icon (or whatever), best by copying an
existing dyekit

2. Add the appropriate Item Property: Cast Spell properties to it:

Example: Leather Dye - Add the following properties
Cast Spell: Dye Leather 1 (1 charge / use)
Cast Spell: Dye Leather 2 (1 charge / use)

3. Set the number of charges to the item (we use 5 charges for the official dyekits) and
modify the cost to suit your module's economy

4. Here comes the somewhat tricky part: Defining the color. In order to define the color
of your dyekit, you need to set its tag according to the following rules:

MyTagXX

where MyTag is any string you want up to 14 chars, and XX is a two digit number
between 0 and 63 that represents the color the dyekit will have. To find out the number of
a color, you need to open the armor color palette in the toolset (i.e. by editing an armor)
and count on that palette from left to right, starting 00 in the first row until your reach the
color you want to your dyekit to have.

Example: If you want your metal color dyekit (CastSpell: Dye Metal 1 & 2) to give red
color, the tag of your new dyekit needs to end with the digits 24. (I'll eventually add a
picture link here, maybe someone from the ccg can make one)

5. Save your dyekit and put it into your module and it is ready to go. You might want to
create a copy of the Dyekit merchant in the store's palette that has your custom dyekit in
the selection.

So in the end, if you want a dyekit for every color, you will have to create 2x 64 items
(minus the ones that already exist) that will have tags from MyTag00 to MyTag63.

If you are interested in the script that is used for the dyekits, have a look at
x2_s2_dyearmor.nss.

In case you are wondering why I am stripping any temporary item properties from the
dyed armor in that script: the CopyAndModifyItem (and CopyItem) scripting command
causes the item properties on the armor to be detached from their creator (as the object id
changes) and since the time for temporary effects and properties is tracked on the creator,
existing temporary properties (i.e. from a magic vestment spell) would never go away
from the dyed armor until the player logs out. Removing all temporary item properties
prevents that from happening.

And for the lazy people...

Android79 created dyekits for every possible color and uploaded them as importable .erf
file to the vault:
Click Here

Modifying the Crafting Feats

HotU comes with Craft Wand, Brew Potion and Scribe
Scrolls feats.

The actual crafting feat system is way too complicated to describe it with a few lines
here, but to give you some head start:

If you want to modify the crafting code, you need to check the file x2_pc_craft.nss. It is
executed at the start of any spellscript. Since it is a single script file, you do not need to
recompile any additional scripts to do any changes to the crafting system.

The actual implementation for the crafting system is can be found in x2_inc_craft, its
pretty well commented. There are scripting hooks we left in for the community to create
things like material components for crafting in this file.

Also note that a couple of options in the crafting system (i.e. always 50 charges on any
crafted wand) can be toggled using module switches as outlined in the first post of this
thread.

Most data for the crafting system is taken from des_crft_spells.2da. This file allows a
builder to disable certain spells for the crafting feats (i.e. timestop). As with all des_*
.2da files, this file does not need to be present on the client.

Also des_crft_scrolls.2da holds a list of templates for the Scribe Scroll feats, pretty much
straightforward.

Prestige Class Control Variables

On popular demand, the variables that you can set on a PC to prevent him from taking a
certain xp2 prestige class. You need to set the variable to 1 to block access to that
prestige class:

Weapon Master: X2_AllowWM
Shifter: X2_AllowShiftr
Pale Master: X2_AllowPalema
Dwarven Defender: X1_AllowDwDef
Dragon Disciple: X1_AllowDrDis
Champion of Torm: X2_AllowDivcha

So basically, if you want to prevent people from taking a certain prestige class in your
module, i.e. until they have taken finished a certain quest, all you need to do is to put this
into the OnClientEnter script:

object oPC = GetEnteringObject();
// no weapon master levels yet ...
if (GetLevelByClass(oPC,CLASS_TYPE_WEAPON_MASTER) == 0)
{
 SetLocalInt(oPC,"X2_AllowWM",1);
}
// no weapon master levels yet ...
if (GetLevelByClass(oPC,CLASS_TYPE_SHIFTER) == 0)
{
 SetLocalInt(oPC,"X2_AllowShiftr",1);
}
// ... and so on

Later you just need to remove this variable if a player has done the quest you want him to
do ... and he will be able to level up in that class.

New scripting functions spotlight

A spotlight on a few of the new scripting functions, just to give you a few ideas on what
could be done. I plan on adding more functions to this list over time.

GetLineOfSightObject

Comment: Pretty cool new function, but really slow, avoid using it in loops or frequently
called scripts

EffectCutsceneImmobilize

// Returns whether or not there is a direct line of sight
// between the two objects. (Not blocked by any geometry).
//
// PLEASE NOTE: This is an expensive function and may
// degrade performance if used frequently.
int LineOfSightObject(object oSource, object oTarget)

// Returns an effect that when applied will paralyze the target's
legs, rendering
// them unable to walk but otherwise unpenalized. This effect
cannot be resisted.
effect EffectCutsceneImmobilize()

Comment: Very helpful to freeze a player into a spot while leaving him able to act (i.e.
for conversations). Note that a character's Dex is set to 3 for the duration of this effect

EffectCutSceneGhost

// Creates a cutscene ghost effect, this will allow creatures
// to pathfind through other creatures without bumping into them
// for the duration of the effect.
effect EffectCutsceneGhost()

Comment: A creature affected by this effect will ignore other people personal space,
walking right through them (example: gelatinous cube). Note that there is a variable you
can set on a creature in the toolset to make them spawn with this effect permanently
(check x2_inc_switches for details

SetMaxHenchmen

// Sets the maximum number of henchmen
void SetMaxHenchmen(int nNumHenchmen)

Comment: Pretty straightforward. If you want to allow players to have more than one
henchmen in your module, you want to call this function in your module's OnLoad script.

GetMaxHenchmen

// Gets the maximum number of henchmen
int GetMaxHenchmen(int nNumHenchmen)

Comment: Return the maximum number of allowed henchmen per player in the current
module.

DayToNight

// Changes the current Day/Night cycle for this player to night
// - oPlayer: which player to change the lighting for
// - fTransitionTime: how long the transition should take
void DayToNight(object oPlayer, float fTransitionTime=0.0f)

Comment: If you played HotU chapter 3, you know this. It will change the lighting
settings for a single player, so he sees the area as night, while everyone else in the area
will see it as day. This does only manipulate a clients visual perception, not the actual
time on the server.

NightToDay

(see DayToNight)

ForceRest

// Gives this creature the benefits of a rest (restored
hitpoints, spells, feats, etc..)
ForceRest()

Comment: If you want to write your own resting system, this is your friend. You could
also use it to make monsters rest when a player leaves for some nasty surprises.

An introduction to Tile Magic
By Georg Zoeller

(Sunjammer’s excellent script/placeable package:
http://nwn.bioware.com/forums/viewtopic.html?topic=373740&forum=47

If you played chapter 3 of the official campaign, you probably asked yourself several
times "how did they do this, they can't be changing the tilesets on the fly?!"

Without a spoiler, here is a short introduction to Tile Magic(tm):

The file you want to look at is "x2_inc_toollib.nss". Two of the functions in this file are
dealing with changing tiles in a tileset (or better creating the illusion to do that).

To give you a short idea of what you can do with it, try this example:

Example 1:

1. Create a new module with a new forest area, 8x8 tiles
2. Create a pit in the middle of the forest area, maybe 3x3 tiles
3. Stick the following script your module:

#include "x2_inc_toollib"
void main()
{
 int nX = 8;
 int nY = 8;

TLChangeAreaGroundTiles(GetArea(OBJECT_SELF),X2_TL_GROUNDTILE_WAT
ER,nX,nY,-0.92f);
}

4. Start your module, enter the area, enable debugmode and run your script using the
runscript command

Example 2:

1. Create an City Interior area, 4x4 tiles
2. Paint town an Inn
3. Place some broken furniture placeables around
4. Save this script into your module:

#include "x2_inc_toollib"
void main()
{
 int nX = 4;
 int nY = 4;

TLChangeAreaGroundTiles(GetArea(OBJECT_SELF),X2_TL_GROUNDTILE_WAT

ER,nX,nY,0.3f);
}

5. Run the script via the console's runscript command.
6. Woa, what a bad place to live

The z-offset is dependent on the tileset. If you use any other tileset than the forest tileset,
you need to play around with the z-offset values in the function!

Of course this is just one of the many things you can do using the technique we used.
You've probably seen many other applications in the Hordes of the Underdark official
campaign, especially Chapter 2 and 3. If not ... what are you waiting for, play the game!

Apply/Remove Tilemagic from Specific Tiles
By satchmogold

Here's an include file I created that allows you to add and remove tile magic to specific
tiles, instead of just effecting a range of the area. I posted this in another thread, but
thought it would be easier to find with its own topic. The include file has two functions,
TLChangeSpecificAreaGroundTile and TLResetSpecificAreaGroundTile. These
functions have the same parameters as the original tile magic functions. The only
difference is that the row and column parameters specify the one tile to be effected,
instead of a range of the area to effect.

//::///
//:: satchmogold's VFX Tool library
//:: sc_inc_mytmagic
//:://
//* ***************************** INTERFACE

const int X2_TL_GROUNDTILE_ICE = 426;
const int X2_TL_GROUNDTILE_WATER = 401;
const int X2_TL_GROUNDTILE_GRASS = 402;
const int X2_TL_GROUNDTILE_LAVA_FOUNTAIN = 349; // ugly
const int X2_TL_GROUNDTILE_LAVA = 350;
const int X2_TL_GROUNDTILE_CAVEFLOOR = 406;
const int X2_TL_GROUNDTILE_SEWER_WATER = 461;
// change the type of the ground or (by default) sub ground tiles
(i.e. water) to the specified type
// Valid values are
// const int X2_TL_GROUNDTILE_ICE = 426;
// const int X2_TL_GROUNDTILE_WATER = 401;
// const int X2_TL_GROUNDTILE_GRASS = 402;
// const int X2_TL_GROUNDTILE_LAVA_FOUNTAIN = 349; // ugly
// const int X2_TL_GROUNDTILE_LAVA = 350;
// const int X2_TL_GROUNDTILE_CAVEFLOOR = 406;
// const int X2_TL_GROUNDTILE_SEWER_WATER = 461;
//* ***************************** IMPLEMENTATION

void TLResetSpecificAreaGroundTile(object oArea, int nColumn, int
nRow)
{

 object oTile = GetFirstObjectInArea(oArea);
 float x = 5.0 + (10.0 * nRow);
 float y = 5.0 + (10.0 * nColumn);
 vector vPos;
 while (GetIsObjectValid(oTile))
 {
 if (GetObjectType(oTile) == OBJECT_TYPE_PLACEABLE &&
GetTag(oTile) == "x2_tmp_tile")
 {
 vPos = GetPosition(oTile);
 if (vPos.x == x && vPos.y == y)
 {
 SetPlotFlag(oTile,FALSE);
 DestroyObject (oTile);
 }
 }
 oTile = GetNextObjectInArea(oArea);
 }
}
void TLChangeSpecificAreaGroundTile(object oArea, int
nGroundTileConst, int nColumn, int nRow, float fZOffset = -0.4f)
{
 object oTile;
 vector vPos;
 vPos.x = 5.0 + (10.0 * nRow);
 vPos.y = 5.0 + (10.0 * nColumn);
 vPos.z = fZOffset;
 float fFace = 0.0;
 location lLoc = Location(oArea, vPos, fFace);
 oTile = CreateObject(OBJECT_TYPE_PLACEABLE, "plc_invisobj",
lLoc,FALSE, "x2_tmp_tile");
 SetPlotFlag(oTile,TRUE);
 ApplyEffectToObject(DURATION_TYPE_PERMANENT,
EffectVisualEffect(nGroundTileConst), oTile);
}

 I took a slightly different approach so that TileMagic could be used for a
rectangular range of one or more tiles.

Sunjammer’s Take:

// ---
// sj_tilemagic_i
// --
/*
 More flexible "tilemagic" commands.
*/
// ---
/*
 12/03 - v1.00 - Sunjammer
 - created
*/
// ---
#include "x2_inc_toollib"

//
**
// * PROTOTYPES *

//

// Creates a layer of ground or sub-ground VFX tiles of the
specified type
// within the specified range. Note the first column and row in
an area is 0,0.
// Also the various ground and sub-ground tiles have individual
z-axis offsets.
// - oArea: area affected
// - nGroundTile: any X2_TL_GROUNDTILE_* constant
// - nColumn: column index of bottom left corner
// - nRow: row index of bottom left corner
// - nColumns: number of columns to be filled, must be
greater than 0
// - nRows: number of rows to be filled, must be greater
than 0
// - fZOffset: z-axis offset (height) of tiles
void TLChangeAreaGroundTileRange(object oArea, int nGroundTile,
int nColumn, int nRow, int nColumns=1, int nRows=1, float
fZOffset = -0.4f);
// Resets any ground or sub-ground VFX tiles previously created
within the
// specified range.
// - oArea: area affected
// - nColumn: column index of bottom left corner
// - nRow: row index of bottom left corner
// - nColumns: number of columns to be reset, must be
greater than 0
// - nRows: number of rows to be reset, must be greater
than 0
void TLResetAreaGroundTileRange(object oArea, int nColumn, int
nRow, int nColumns=1, int nRows=1);

// **
// * FUNCTIONS *
//

void TLChangeAreaGroundTileRange(object oArea, int nGroundTile,
int nColumn, int nRow, int nColumns=1, int nRows=1, float
fZOffset = -0.4f)
{
 object oTile;
 location lLoc;
 // sanity check
 if(nColumns < 1 || nRows < 1) return;
 // find center of first bottom left tile in range
 float fX = 10.0 * nColumn + 5.0;
 float fY = 10.0 * nRow + 5.0;
 vector vPos = Vector(fX, fY, fZOffset);
 // fill range
 int i, j;
 for (i = nColumn ; i < nColumn + nColumns; i++)
 {
 for (j = nRow; j < nRow + nRows; j++)
 {
 // create VFX tile
 lLoc = Location(oArea, vPos, 0.0);

 oTile = CreateObject(OBJECT_TYPE_PLACEABLE,
"plc_invisobj", lLoc, FALSE, "x2_tmp_tile");
 ApplyEffectToObject(DURATION_TYPE_PERMANENT,
EffectVisualEffect(nGroundTile), oTile);
 SetPlotFlag(oTile,TRUE);
 // next row
 vPos.y = vPos.y + 10.0;
 }
 // next column, first row
 vPos.x = vPos.x + 10.0;
 vPos.y = fY;
 }
}
void TLResetAreaGroundTileRange(object oArea, int nColumn, int
nRow, int nColumns=1, int nRows=1)
{
 object oTile;
 vector vPos;
 // sanity check
 if(nColumns < 1 || nRows < 1) return;
 // get bounds
 float fX1 = 10.0 * nColumn;
 float fY1 = 10.0 * nRow;
 float fX2 = 10.0 * (nColumn + nColumns);
 float fY2 = 10.0 * (nRow + nRows);
 // reset range
 oTile = GetFirstObjectInArea(oArea);
 while (GetIsObjectValid(oTile))
 {
 // check object is a tile
 if (GetObjectType(oTile) == OBJECT_TYPE_PLACEABLE &&
GetTag(oTile) == "x2_tmp_tile")
 {
 // check tile is located in range
 vPos = GetPositionFromLocation(GetLocation(oTile));
 if(vPos.x > fX1 && vPos.x < fX2 && vPos.y > fY1 &&
vPos.y < fY2)
 {
 SetPlotFlag(oTile,FALSE);
 DestroyObject (oTile);
 }
 }
 oTile = GetNextObjectInArea(oArea);
 }
}

On Hit Cast Spell
By Georg Zoeller

Note: If you want to add an item with a custom OnHitCastSpell property, I really suggest
you take the template provided in x2_it_example.nss

1) How does it work?

When an OnHitCastSpell is fired, the original spells spell script gets fired, the variables
are distributed this way (as explained in x2_s3_onhitcast.nss):

OBJECT_SELF
The possessor of the item firing the spell

GetSpellTargetObject()
Weapon: The person hit
Armor/Shield: The person hitting the armor/shield

GetCasterLevel()
The caster level set on the item property

GetSpellCastItem()
The item triggering the ability

2) Why are there no beneficial spells (i.e. heal) in the list?

See 1. It would not make sense to heal the person you are hitting, but you can script them
using OnHit Unique power.

3) Is it possible to do a percentage chance for the OnHit spell?

Yes, it just requires a bit custom coding. In fact there are a couple of OnHitCastSpell item
properties that have such a percentage chance coded in:
Check the Chaos Shield on the palette - It's percentage chance to trigger its OnHit
property is equal to 2.5 times the caster level you set the item property to.

This means if you put the OnHitCastSpell: Chaos Shield property CasterLevel 20 on an
armor or shield, it would have a 2.5x20 = 50% chance of triggering it's spellscript on
each hit

4) "But people will abuse this in modules, it will unbalance the game and make <put
class here> obsolete?"

To be honest, I could not care less.
Its up to the individual module designer to balance his/her module or persistent world. IF
the designer thinks giving a monty haul of OnHitCastSpell properties out, its his decision,
and he will pay for it as people will just move to another world to play on. As for
LocalVault ... there is a reason why we also have ServerVault mode in the game.

5) "Why is this property so dangerous performance wise - that sounds like bad
programming"

Just think of this: Each time a creature wearing an armor or shield with this property is
being hit, and each time a creature wielding a weapon with this property hits, a spellscript
is fired. These spellscripts can be rather complex and thus they take some time to
execute. Usually this is a no brainer, as it does not happen every few seconds that these
spells go off, but once you put them as OnHitCastSpell property, they will execute very
often.

Magic missile has a 28 ms execution time on my test computer. Envision a fighter doing
5 attacks per round against a weak opponent. This would make 28x5 ms cpu time
required in addition to all other attack engine computations and scripts (OnAttack). Now
just think about haste or whirlwind. If you make a rather bad choice about your OnHit
spells (i.e. an area of effect spell that needs to loop over a huge number of creatures),
only a hand full of people with such a weapon fighting each other have the potential to
take up most of your CPU cycles:

Improved Whirlwind with a OnHitCastSpell: IGMS script executed in a group of 20
goblins would cause something like 100ms (guessed) x 20 = 2000 ms of script executions
each combat round, in addition to probably 20 OnDamage and OnHit scripts firing.

Bottom-line: The individual module / world designer needs to act responsible when
placing weapons or armor with this property. If given out rarely or using its own,
optimized custom scripts (that could even be cached), you will most likely not run into
trouble and be able to add a great deal of interesting new stuff to your world.

People running local vault servers should make use of the new item property scripting
commands to strip any unwanted OnHitCastSpell item property from incoming
character's weapons.

6) "Any way to find out if the OnHitCastSpell event was triggered by a critical?"

no

7) Using the item event routing with OnHitCastSpell

The item event routing system that is included in the new module default scripts that are
attached to any new module created with the XP2 toolset includes an event for the
OnHitCastSpell event.

See x2_it_example.nss and the sticky in the scripting forum for more details

8) Under which conditions does this event fire
OnHitCastSpell only fires if:
a) at least one point of damage is caused
b) the attacker and attackee are both creatures

it does not fire for spells.

Intelligent Weapons
By Georg Zoeller and Misc.

The talking sword was scripted with the community builders in mind, so it's not too
difficult.

How to create a new talking weapon:

1) copy enserrics dialog file (x2_iw_enserric) and save it as i.e. my_iw_sword.

2) remove all of enserrics story related dialog, so only battle cries and hit sounds are left
in the dialog tree. make sure you leave at least one line without any conversation
condition so people can actually talk to your sword.

3) Attach the OnHit: Intelligent weapon (makes the weapon speak on hit) and
OnHit:TalkTo (unlimited times per day) properties to the weapon

4) change the weapon's tag to the name of your dialog file.

That's it, you now have your own talking weapon

Kylania:
Noticed an odd thing about this. When you TalkTo the sword it'll have the name
"Enserric the Sword" since the invisible placeable it spawns for you to talk to is hard
coded into the x2_inc_intweapon script.

x2_inc_intweapon Line 183:
 object oCreate = CreateObject(OBJECT_TYPE_PLACEABLE,
"x2_plc_intwp", GetLocation (OBJECT_SELF));

Maybe you'd want to replace that with say the name of your placed sword and create a
matching invis object for it?

Or go with the "I used to be dead" concept and instead substitute a Ghostly Image of the
previous life of the sword, like an old man in chain mail or something?

Conclusion by EgoAnt
Step 1: Create the item, it doesn't really matter what it is, just remember that if you want
it to be a weapon that talks in battle there are some extra steps. For the purposes of this
example I created a robe. As FaxCelestis said above, in order to be able to talk to the item
you will need to add the "Talk To" property found under "Cast Spell"

Step 2: In the standard placeable objects list find the "Enserric the sword" placeable
object. Edit a copy of it and define a new name, portrait, and blueprint ResRef. Make a

note of the new ResRef.

Step 3: Open the following resources:
x2_inc_intweapon
x2_s3_intitemtlk

In the x2_inc_intweapon go to line 183 and change "x2_plc_intwp" to your new ResRef
(as noted above). Save this file.

Now all you have to do is put a single space anywhere in the "x2_s3_intitemtlk" file and
then delete the space you just made. This will signal to the toolset that this file needs to
be recompiled. Save the file.

Step 4: Follow Georg Zoeller's instructions from above to create the conversation.
However, feel free to add in any dialogue you feel is appropriate to the sword. In my case
I was making a robe, so for this step instead of copying the existing dialog file I simply
created a brand new one and named it "pwr_robehollow". The reason for this, of course,
is that the player isn't going to be running around bashing things with his robe...

For those too lazy to scroll back up (and in the interest of having all the instructions
together) here are those instructions again:

1) copy enserrics dialog file (x2_iw_enserric) and save it as i.e. my_iw_sword.

2) remove all of enserrics story related dialog, so only battle cries and hit sounds are left
in the dialog tree. make sure you leave at least one line without any conversation
condition so people can actually talk to your sword.

3) Attach the OnHit: Intelligent weapon (makes the weapon speak on hit) and
OnHit:TalkTo (unlimited times per day) properties to the weapon

Step 5: Start testing, it should pretty much work at this point.

Adding Material Components to the Crafting Feats
By Georg Zoeller

Technical Stuff:

The Crafting Feats System in HotU offers the option for module builders to add material
components to any spell to balance out the economical impact of these feats on the
module.

There is a 2da file called des_matcomp.2da.
It only needs to exist on the serve side, so you can put it into the server version of your

hakpak or even your override directory (which would also affect single player).

Inside that file there is a comp_tag column. In this column you can put the tag of an item
that must be present in the player's inventory when he wants to cast the spell. If you make
the column empty (****), the spell does not need a material component.

We restricted a couple of spells to make them unavailable for scrolls for balancing
reasons (and that's not only true for multiplayer, chain casting timestop will wreck
balance in any campaign).

The three spells that require a material component by default are:
Harm
Timestop
True Seeing

The material component for all these spells is NW_IT_MSMLMISC17 (Dragon Blood)
which is usually dropped by dragons.

How to Disable Crafting Feats
By Georg Zoeller

Craft Skills : Craft Weapon, Craft Armor

You can disable the craft skill conversation that allows a character to modify armor. You
can disable these skills on a per module, per area (i.e. if you don't think people should
modify their armor in a dungeon) or per character basis (just set the variable on either PC,
Module or Area):

int "X2_L_DO_NOT_ALLOW_CRAFTSKILLS" = TRUE

Remember you can use the convenient new "Variables" window in the toolset to do this
for areas or the module.

Note: This only disables the craft part of the crafting conversation. It does NOT effect the
ability to craft weapons or armor from components, if you want to restrict that, restrict
access to the components.

Craft Feats: Brew Potions, Scribe Scrolls, Craft Wands

By setting the following module switch (see x2_mod_def_load.nss for details), you can
disable the crafting feats in your module:

MODULE_SWITCH_DISABLE_ITEM_CREATION_FEATS

HOU Problems With Scripts That Use the DelayCommand
By Georg Zoeller

http://nwn.bioware.com/forums/viewtopic.html?topic=290730&forum=47

Example: Subraces

The following example demonstrates the use of dynamic item properties in creating a
flexible, completely data (2da) driven subrace system.

I plan on add a "add a custom made feat to your new subraces" kind of tutorial in the
future, but since I am doing this in my free time, it might be a while

Dynamic item properties
By Georg Zoeller

Technical Overview / Features

This system works by creating a creature hide on entering player characters. The creature
hide then gets the item properties added for the subrace the player chose when creating
his character.

Feature set:
* completely data driven with all data residing on the server
* add and remove subraces easily without changing code or recompiling
* enforces the players subrace field to be valid
* restrict subraces to member of certain races (i.e. only elves can become drow's)

"_inc_subraces.nss"

This file is the heart of the subrace system. Please note that it is a part of a much larger
module I am playing with right now, so I needed to pull some functions from other files
into it to make it run independently.

//--
// S u b r a c e D e m o
//--
/*
 _inc_subraces.nss
 The purpose of this file is to demonstrate how to make use of dynamic item
 properties and the bioware item property include file to create a highly
 flexible, 2da driven subrace system.
 Subrace 2DA Definition
 Row Field Purpose
 0 id Unique Identifier (0 = no subrace)
 1 hide reference to creature hide item (**** = x2_it_emptyskin)

 2 properties Comma separated list of properties to add to the hide
 3 race Racial type this subrace is limited to (-1 = no limit)
*/
//--
// author: georg zoeller; version: 2003-Oct-21; (c) 2003 Bioware Corp.
//--

// * Include the Bioware item property include.
#include "x2_inc_itemprop"
//#include "_inc_core"
//--
// C O N S T A N T S
//--
// * Set to TRUE if you feel you have too much memory and want to speed up 2da
reads
const int TD_CFG_PERF_CACHE_ALL_2DA_READS = FALSE;

//--
// C O N S T A N T S
//--
const int GZ_SUBRACE_2DAROW_ID = 0;
const int GZ_SUBRACE_2DAROW_HIDE = 1;
const int GZ_SUBRACE_2DAROW_PROPS = 2;
const int GZ_SUBRACE_2DAROW_RACELIMIT = 3;

const int GZ_SUBRACE_ERROR_UNKNOWN = -1;
const int GZ_SUBRACE_ERROR_INVALID_RACE = -2;
//--
// C O N F I G U R A T I O N
//--
// * Use these constants to change the names of the 2da files that hold all
// * information on subraces and properties
const string GZ_SUBRACE_CONST_PROP_2DA = "gz_properties";
const string GZ_SUBRACE_CONST_DEF_2DA = "gz_subraces";
//--
// I N T E R F A C E
//--
// * Returns the creature hide object used for managing the subrace properties
// * on the player. If the player does not have a creature yet, create and
// * equip one, before returning it.
object SubraceGetOrCreateCreatureHide(object oPC, string sSubRace);
// * Returns the item property defined in row nPropRow of the 2da file in
// * GZ_SUBRACE_CONST_PROP_2DA
itemproperty SubraceGetItemPropertyFrom2DA(int nPropRow);
// * Reads GZ_SUBRACE_CONST_DEF_2DA and returns value for sSubrace in n2DARow
// * n2DARow possible values:
// * GZ_SUBRACE_2DAROW_ID - Subrace ID (unique id)
// * GZ_SUBRACE_2DAROW_HIDE - ResRef of Hide Item
// * GZ_SUBRACE_2DAROW_PROPS - Comma seperated properties list
// * GZ_SUBRACE_2DAROW_RACELIMIT - Racial Type Limitation
string SubraceGetRaceData(string sSubrace, int n2DARow);
// * Perform the subrace check and perform all necessary operations on the
// * player to make the subrace found work on the character. If no valid subrace
// * is found, reset the players subrace field to a null-string
// * This function is intended to be called from the OnClientEnter event of a
// * module but will work from anywhere else as well.
int SubraceDoSubraceCheck(object oPC);

//--
// I M P L E M E N T A T I O N
//--

//--
// +++ I M P O R T E D from _inc_debug +++
//--
const int TD_DEBUG = TRUE;
const int TD_DEBUG_WARNINGS = 1; // 1 - all, 2 - log only
void DebugMsg(string sMessage, string sDomain = "[Global]", string sFunction =
"Unspecified");
void DebugWriteLog(string sMessage, string sDomain = "[Global]", string sFunction
= "Unspecified");

void DebugWriteWarning(string sMessage, string sDomain = "[Global]", string
sFunction = "Unspecified");
void LogWriteMessage(string sMessage, string sDomain = "[Global]", string
sFunction = "Unspecified");
void LogWriteWarning(string sMessage, string sDomain = "[Global]", string
sFunction = "Unspecified");
void DebugWriteLog(string sMessage, string sDomain = "[Global]", string sFunction
= "Unspecified")
{
 if (TD_DEBUG)
 {
 WriteTimestampedLogEntry(sDomain +"::"+sFunction+ "() - " + sMessage);

void DebugWriteWarning(string sMessage, string sDomain = "[Global]", string
sFunction = "Unspecified")
{
 if (TD_DEBUG_WARNINGS>0)
 {
 WriteTimestampedLogEntry("WARN: "+ sDomain +"::"+sFunction+ "() - " +
sMessage);
 }
}
void DebugMsg(string sMessage, string sDomain = "[Global]", string sFunction =
"Unspecified")
{
 if (TD_DEBUG)
 {
 SendMessageToPC(GetFirstPC(),sDomain +"::"+sFunction+ "() - " + sMessage);
 }
 DebugWriteLog(sMessage, sDomain, sFunction) ;
}
void DebugWarning(string sMessage, string sDomain = "[Global]", string sFunction =
"Unspecified")
{
 if (TD_DEBUG_WARNINGS == 1)
 {
 SendMessageToPC(GetFirstPC(),"WARN " +sDomain +"::"+sFunction+ "() - " +
sMessage);
 }

void LogWriteMessage(string sMessage, string sDomain = "[Global]", string
sFunction = "Unspecified")

 DebugWriteLog("MISS: " + sCache,"_inc_tool","GZGet2DAString");

 }
}

 DebugWriteWarning(sMessage, sDomain, sFunction) ;
}

{
 WriteTimestampedLogEntry(sDomain +"::"+sFunction+ "() - " + sMessage);
}
void LogWriteWarning(string sMessage, string sDomain = "[Global]", string
sFunction = "Unspecified")
{
 WriteTimestampedLogEntry("WARN: "+ sDomain +"::"+sFunction+ "() - " +
sMessage);
}

//--
// +++ I M P O R T E D from _inc_tools +++
//--
string GZGet2DAString(string s2DA, string sCol, int nRow, int bAlwaysCache =
FALSE)
{
 int bCache = (bAlwaysCache || TD_CFG_PERF_CACHE_ALL_2DA_READS);
 string sCache = "GZ_2DA_" +s2DA + "+" +sCol + "+" + IntToString(nRow);
 string sRet = GetLocalString(GetModule(),sCache);
 if (sRet != "")
 {
 DebugWriteLog("HIT: " + sCache+": " + sRet ,"_inc_tool","GZGet2DAString");
 return sRet;
 }

 sRet = Get2DAString(s2DA,sCol, nRow);
 if (sRet != "" && bCache)

 {
 SetLocalString(GetModule(),sCache,sRet);
 DebugWriteLog("Write: " + sCache + ": " +
sRet,"_inc_tool","GZGet2DAString");
 }
 return sRet;
}
int GZGet2DAInt(string s2DA, string sCol, int nRow, int bAlwaysCache = FALSE)

 }
 //--
 // If there is no creature hide already create one...
 //--
 if (!GetIsObjectValid(oHide) || bOverride)
 {
 //--
 // Create creature hide, based on 2da definition
 //--
 if (sRefHide == "")
 {

 }
 return oHide;

{
 int nRet = StringToInt(GZGet2DAString(s2DA, sCol, nRow, bAlwaysCache));
 return nRet;
}
//--
// +++ I M P O R T E D from _inc_player +++
//--

void PlayerSendStrRef(object oPlayer, int nStrRef)
{
 SendMessageToPCByStrRef(oPlayer, 0x01000000 +nStrRef);
}

//--
// I M P L E M E N T A T I O N
//--

//--
// Georg Zoeller, Oct 2003
// Returns the creature hide object used for managing the subrace properties
// on the player. If the player does not have a creature hide yet, create and
// equip one, before returning it. If the player has a creature hide, it's
// resref is compared against the definition in the 2da and it is replaced if
// the resref's don't match
//--
object SubraceGetOrCreateCreatureHide(object oPC, string sSubRace)
{
 //--
 // Get definition of creature hide
 //--
 string sRefHide = GZGet2DAString(GZ_SUBRACE_CONST_DEF_2DA, sSubRace,
GZ_SUBRACE_2DAROW_HIDE);
 object oHide = GetItemInSlot(INVENTORY_SLOT_CARMOUR,oPC);
 int bOverride;
 if (GetResRef(oHide) != sRefHide)
 {
 DestroyObject(oHide);
 bOverride = TRUE;

 //--
 // Empty String in the 2da, default to empty creature hide
 //--
 sRefHide = "x2_it_emptyskin";
 }
 oHide = CreateItemOnObject(sRefHide, oPC);
 //--
 // Some NWN creature hides are inv
 //--
 SetIdentified(oHide,TRUE);
 AssignCommand(oPC,ActionEquipItem(oHide,INVENTORY_SLOT_CARMOUR));

}
//--
// Georg Zoeller, Oct 2003
// Returns the item property defined in row nPropRow of the 2da file in
// GZ_SUBRACE_CONST_PROP_2DA
//
// Note: I wrapped ItemProperty ID #0 to 255, so I can use 0 as invalid
//--
itemproperty SubraceGetItemPropertyFrom2DA(int nPropRow)
{
 int nPropID = GZGet2DAInt("gz_properties", "PropertyID", nPropRow);
 itemproperty ip;
 int nParam1;
 int nParam2;
 int nParam3;
 int nParam4;
 if (nPropID>0)
 {
 //--
 // We interprete 255 as 0 so we can use 0 as invalid before this point
 //--
 if (nPropID == 255)
 {
 nPropID = 0;
 }
 nParam1 = GZGet2DAInt(GZ_SUBRACE_CONST_PROP_2DA, "Param1", nPropRow);
 nParam2 = GZGet2DAInt(GZ_SUBRACE_CONST_PROP_2DA, "Param2", nPropRow);
 nParam3 = GZGet2DAInt(GZ_SUBRACE_CONST_PROP_2DA, "Param3", nPropRow);
 nParam4 = GZGet2DAInt(GZ_SUBRACE_CONST_PROP_2DA, "Param4", nPropRow);
 //--
 // Generate the item property from the parameters
 //--
 ip = IPGetItemPropertyByID(nPropID,nParam1, nParam2, nParam3, nParam4);
 }
 if (!GetIsItemPropertyValid(ip))
 {
 //--
 // Some message into the log to make debugging easier
 //--
 DebugWriteWarning("_inc_subraces::SubraceGetItemPropertyFrom2DA - invalid
item property created, values: " +
 "ID: " + IntToString(nPropID) + " p:" +
IntToString(nParam1) + ", "+ IntToString(nParam2) + ", " +
 IntToString(nParam3) + ", " +
IntToString(nParam4), "_inc_subraces","SubraceGetItemPropertyFrom2DA");
 }
 return ip;
}

//---
// This is the heart of the subrace system. This function determines if the pc
// has a valid subrace, meets all requirements for that subrace and, and finally
// adds the subrace specific item properties to the player's creature hide slot

int SubraceApplyPlayerSubrace(object oPC, string sSetSubraceTo = "")
{
 //--

 if (sSetSubraceTo != "")
 {
 SetSubRace(oPC,sSetSubraceTo);
 }
 //--
 // Determine the 2da row and retrieve the subrace id
 //--
 string sSubRace = GetStringLowerCase(GetSubRace(oPC));
 int nSubraceId = GZGet2DAInt(GZ_SUBRACE_CONST_DEF_2DA, sSubRace,
GZ_SUBRACE_2DAROW_ID,TRUE);

// The parameter sSetSubraceTo can be specified to overwrite the player's
// current value in the SubRace field, effectively forcing another subrace.
//---

 // If sSetSubraceTo was set, overwrite existing subrace with a new one
 //--

 //--
 // Get the PCs creature hide object.
 //--

 if (nSubraceId == 0 && sSubRace != "")
 {
 return GZ_SUBRACE_ERROR_UNKNOWN ;
 }
 if (nSubraceId>0)
 {

 //--
 int nReqRacialType = GZGet2DAInt(GZ_SUBRACE_CONST_DEF_2DA, sSubRace,
GZ_SUBRACE_2DAROW_RACELIMIT);
 if (nReqRacialType != -1)
 {
 if (GetRacialType(oPC) != nReqRacialType)
 {
 return GZ_SUBRACE_ERROR_INVALID_RACE;
 }

 object oHide = SubraceGetOrCreateCreatureHide(oPC,sSubRace);
 itemproperty ip;
 //--
 // Determine and add all item properties that define this subrace

 string sProps = GZGet2DAString(GZ_SUBRACE_CONST_DEF_2DA, sSubRace,
GZ_SUBRACE_2DAROW_PROPS);
 string sTemp;
 int nTemp;
 int nPos = FindSubString(sProps,",");

 //--
 // if multiple properties have been specified seperated by ,
 // add all of them
 //--
 sTemp = GetSubString(sProps,0,nPos);
 nTemp = StringToInt(sTemp);
 sProps = GetSubString(sProps,nPos+1, GetStringLength(sProps) -
GetStringLength(sTemp)-1);

 }

 {
 nPos = -1;
 }
 }
 nTemp = StringToInt(sProps);
 if (nTemp >0)
 {

 // existing item property of the same type
 //--
 ip = SubraceGetItemPropertyFrom2DA(nTemp);
 IPSafeAddItemProperty(oHide, ip, 0.0f,
X2_IP_ADDPROP_POLICY_IGNORE_EXISTING, FALSE,FALSE);
 }
 }

 //--
 // Enforce Racial Restrictions if existant.

 }

 // to the creature hide
 //--

 while (nPos!= -1)
 {

 nPos = FindSubString(sProps,",");
 if (nTemp >0)
 {
 //--
 // Retrieve item property and add it to the hide, ignoring any
 // existing item property of the same type
 //--
 ip = SubraceGetItemPropertyFrom2DA(nTemp);
 IPSafeAddItemProperty(oHide, ip, 0.0f,
X2_IP_ADDPROP_POLICY_IGNORE_EXISTING, FALSE,FALSE);

 else

 //--
 // Retrieve item property and add it to the hide, ignoring any

 //--
 // return the subrace id to the calling script. 0 indicates that no valid
 // subrace was found

}
//--
// Reads GZ_SUBRACE_CONST_DEF_2DA and returns value for sSubrace in n2DARow
// n2DARow possible values:
// GZ_SUBRACE_2DAROW_ID - Subrace ID (unique id)
// GZ_SUBRACE_2DAROW_HIDE - ResRef of Hide Item
// GZ_SUBRACE_2DAROW_PROPS - Comma seperated properties list
// GZ_SUBRACE_2DAROW_RACELIMIT - Racial Type Limitation
//--
string SubraceGetRaceData(string sSubrace, int n2DARow)
{
 return GZGet2DAString(GZ_SUBRACE_CONST_DEF_2DA, sSubrace, n2DARow);
}
//--
// Perform the subrace check and perform all necessary operations on the

// is found, reset the players subrace field to a null-string
// This function is intended to be called from the OnClientEnter event of a
// module but will work from anywhere else as well.
//--
int SubraceDoSubraceCheck(object oPC)
{
 int nRet = SubraceApplyPlayerSubrace(oPC);
 if (nRet == GZ_SUBRACE_ERROR_UNKNOWN)
 {
 SendMessageToPC(oPC,"Unknown subrace selected");
 SetSubRace(oPC,"");
 }
 else if (nRet == GZ_SUBRACE_ERROR_INVALID_RACE)
 {
 SendMessageToPC(oPC,"Your subrace can not be member of the race you
selected");
 SetSubRace(oPC,"");
 }
 else if (nRet != 0)

 //--
 return nSubraceId;

// player to make the subrace found work on the character. If no valid subrace

 {
 SendMessageToPC(oPC,"Valid subrace detected - character adjusted.");
 }
 return nRet;
}

Module OnEnter Script

Put the following code in the module's OnClientEnter Script to make the subrace system
take effect:

// This initializes subrace support on the player.
// Detailed documentation provided within _inc_subraces.nss
//--
 SubraceDoSubraceCheck(oPC);

gz_subraces.2da
This file is holds the definition for each subrace. It is a design side only 2da file, thus it
needs to be only present on the server. Please note that the data in this file is for
demonstration purposes only, it does not contain the appropriate data for each of the
subraces

2DA V2.0
 Label drow tiefling
0 id 1 2
1 hide **** nw_it_creitem196

2 properties 7,27 ****
3 requireRace 1 6

Explanation:

For each subrace you want to have, you need a new column in this 2da, that uses the
lowercase name of the subrace as name. The rows in this 2da file are defined as follows:

0 - id - a unique ID for your subrace, which MUST NOT be 0
1 - hide - the resref to the creature hide item. if you leave this field empty(****), the
game will automatically create an empty skin
2 - properties - a comma seperated list of item properties that are going to be added to
the creature hide. No spaces are allowed between the numbers and commas. Each number
represents a line in gz_properties.2da
3 - requireRace - A race id (row number from races.2da) that is allowed to take this
subrace. I.e. by putting a 1 [elf] into this row, only elves can take this subrace. If anyone
else enters this subrace into their subrace field, it is automatically reset.

gz_properties.2da
This file is used to define the item properties that the system knows. The line indices for
those numbers are put into the properties row of gz_subraces.2da

2DA V2.0
 Label PropertyID Param1 Param2 Param3 Param4 Param5
0 **** **** **** **** **** **** ****
1 FtWhirlwind 12 29 **** **** **** ****
2 FtDisarm 12 28 **** **** **** ****
3 AbilityStr+1 255 0 1 **** **** ****
4 AbilityStr+2 255 0 2 **** **** ****
5 AbilityStr+3 255 0 3 **** **** ****
6 AbilityStr+4 255 0 4 **** **** ****
7 AbilityDex+1 255 1 1 **** **** ****
8 AbilityDex+2 255 1 2 **** **** ****
9 AbilityDex+3 255 1 3 **** **** ****
10 AbilityDex+4 255 1 4 **** **** ****
11 AbilityCon+1 255 2 1 **** **** ****
12 AbilityCon+2 255 2 2 **** **** ****
13 AbilityCon+3 255 2 3 **** **** ****
14 AbilityCon+4 255 2 4 **** **** ****
15 AbilityInt+1 255 3 1 **** **** ****
16 AbilityInt+2 255 3 2 **** **** ****
17 AbilityInt+3 255 3 3 **** **** ****
18 AbilityInt+4 255 3 4 **** **** ****
19 AbilityWis+1 255 4 1 **** **** ****
20 AbilityWis+2 255 4 2 **** **** ****
21 AbilityWis+3 255 4 3 **** **** ****
22 AbilityWis+4 255 4 4 **** **** ****
23 AbilityCha+1 255 5 1 **** **** ****
24 AbilityCha+2 255 5 2 **** **** ****
25 AbilityCha+3 255 5 3 **** **** ****
26 AbilityCha+4 255 5 4 **** **** ****
27 AbilityStr-1 27 0 1 **** **** ****
28 AbilityStr-2 27 0 2 **** **** ****
29 AbilityDex-1 27 1 1 **** **** ****
30 AbilityDex-2 27 1 2 **** **** ****
31 AbilityCon-1 27 2 1 **** **** ****
32 AbilityCon-2 27 2 2 **** **** ****
33 AbilityInt-1 27 3 1 **** **** ****
34 AbilityInt-2 27 3 2 **** **** ****

35 AbilityWis-1 27 4 1 **** **** ****
36 AbilityWis-2 27 4 2 **** **** ****
37 AbilityCha-1 27 5 1 **** **** ****
38 AbilityCha-2 27 5 2 **** **** ****
39 DamRes_Fire5 23 10 1 **** **** ****
40 DamRes_Fire10 23 10 2 **** **** ****
41 DamRes_Fire15 23 10 3 **** **** ****
42 DamRes_Elec5 23 9 1 **** **** ****
43 DamRes_Elec10 23 9 2 **** **** ****
44 DamRes_Elec15 23 9 3 **** **** ****

Explanation

Col:PropertyId - This column holds the id of an item property (ITEM_PROPERTY_*
constant from nwscript.nss).
Example: 12 is ITEM_PROPERTY_BONUSFEAT

Col:Param1-5 - These columns hold all the parameters that would go into the appropriate
item property function that would be called to create the item property defined in the
PropertyId column.
Example:

If your ItemPropertyId is 12 (ITEM_PROPERTY_BONUSFEAT), you only need to put
one parameter (the id from iprp_feats) into these columns, as the scripting function
ItemPropertyBonusFeat(int nFeat) only has one parameter (nFeat).

further uses/ideas
* This system probably could be used to some kind of lycanthropy scripts.

* You can script conversations that change the players subrace and use the functions
provided in the file (SubraceApplyPlayerSubrace) to easily script these conversations.

* You can add custom feats in HotU - allowing you to make even more convincing
subraces (i.e. drows that can cast darkness).

Notes
Please note that if your server is running the Enforce Legal Character option (ELC), hides
equipped on a player will be removed when the player enters (?). You would need to call
the subrace check on every player login to avoid that.

What this example is not
This example is not a subrace system that circumvents the existing limitations of
NWScript, namely ECL compliant subraces or ability score adjustments on the actual
character data. If you are looking for a way to break the barriers of NWScript, there are a
couple of options for that available elsewhere

This example is also NOT trying to compete with any of the more complex community
implementations of subraces, it is just an example to show how dynamic item properties
could be used to remove the need for hardcoding in script.

HotU OnSpawn and Variables

By ddaedelus

How to use HotU OnSpawn & Variables

I hadn’t seen anyone post much information on this. Maybe that means it’s perfectly
clear. I suspect not, however, so I thought I’d put together what I’ve figured out…

This post hopefully clears up how to use the new OnSpawn and Variables.

What the old (NWN & SoU) OnSpawn required:

To get a creature to spawn in with a certain condition or animation, you had to at least
change the OnSpawn script, and depending on what you were doing (for example, a
custom OnPerception script) you may even have had to change up to three of the
creatures default scripts. This, quite simply, was a huge pain.

What the new (HotU) OnSpawn does:

You’ve probably noticed that if you right click on a placed creature, one of the choices
that comes up is “Variables.” The HotU OnSpawn script uses these variables to
determine spawn-in conditions; the result being, you don’t have to alter the default
OnSpawn. In fact, the only script you may need to alter is the UserDefined script, and
that’s only if you’re doing something funky.

NOTE: If you updated your module to HotU in the middle of construction, any pre-
update creatures you have placed will have the SoU OnSpawn script, which doesn’t use
Variables (setting variables on these creatures will have no effect). Any new creatures
you create or place from the standard palette will use the HotU OnSpawn script (which is
called “x2_def_spawn”), and can use the new Variables feature.

Using either OnSpawn script will work in HotU, so there’s no need to go back and re-
work creatures you’ve already scripted unless you’re a consistency freak.

The Variables window:

So to get started on this, place a creature in your module, right-click, and select
Variables.

The Window that pops up is pretty basic. The trick to using this window is to know what
the variable names are. If you were to open the HotU default OnSpawn script,
“x2_def_spawn”, you would see that it uses the include file called “x2_inc_switches.”
The include file is pretty well-commented and mostly self explanatory.

Using the Variables window is most easily demonstrated with a simple example:

Example: A common spawn-in condition is to set the creature to spawn in using its
stealth skills, so we’re going to use the Variable window to make a creature spawn in
hidden.

1. Create the new creature either from scratch or by selecting Edit Copy from a creature
in the standard palette.

2. At the bottom of the Advanced tab, you’ll see a button called “Variables.” Click on
that to open the Variables window.

3. Now take a look at the include file. If you scroll down a bit, under the “Creature”
heading you’ll find that the variable for spawning in hidden is called
“X2_L_SPAWN_USE_STEALTH.”

4. Back in your Variable window, type “X2_L_SPAWN_USE_STEALTH” (no quotes)
into the Name field, and “1” into the Value field. Click on Add. Note that there’s a Type
field also. This defaults to Int, so in this case we don’t need to change it. Check the listing
in the “x2_inc_switches” file for the type of variable the switch requires and change it
here if necessary.

5. Now save your new creature. And quite honestly, that’s all there is to it. Much easier
than in SoU.

I didn’t make my creature in the palette so need to update my blueprint.

I make it a general habit for all my creatures to be in the palette so that I can use them in
encounter triggers. I would recommend you do the same. Also I would strongly suggest
that any editing you do to a creature be done in the palette rather than on a placed
instance. Why?

If you placed a creature in your area, then modified the variables (or anything else) there,
and then want to add it to your custom palette (or update your palette from the instance),
you’re in for a bit of grief: The toolset will try to make custom blueprints of every item
your creature is carrying EVEN IF YOU DIDN’T MODIFY THEM in the instance. This
is exceptionally annoying.

If you do this, the workaround is to X out of every pop-up blueprint window that comes
up (except for the creature itself). There will be one for every item the creature is
carrying. If you hit OK instead, it will alter the resref of the item. That’s potentially bad if
you call that resref from any script in your module.

Real solution: Don’t edit placed instances of creatures. Always edit from the palette and
then update instances from there.

What about UserDefined scripts that I want to fire from OnSpawn?

Look at the top commented portion of “x2_def_spawn.” You’ll see this:

If you set a ninteger on the creature named

 The creature will fire a pre and a post-spawn

else if (nUser == EVENT_USER_DEFINED_PRESPAWN)

// “X2_USERDEFINED_ONSPAWN_EVENTS" to either 1 or 3. Don’t be
confused
// by the “PRESPAWN” part above. That’s a local constant.

 "X2_USERDEFINED_ONSPAWN_EVENTS"

 event on itself, depending on the value of that
 variable
 1 - Fire Userdefined Event 1510 (pre spawn)
 2 - Fire Userdefined Event 1511 (post spawn)
 3 - Fire both events

Now look at the bottom of the default UserDefined script. You’ll see this (I’ve added the
comments to it):

{
// This part of the UserDefined script fires if in the variables
window you set

}
else if (nUser == EVENT_USER_DEFINED_POSTSPAWN)
{
// This part of the UserDefined script fires if in the variables
window you set
// “X2_USERDEFINED_ONSPAWN_EVENTS" to either 2 or 3. Don’t be
confused
// by the “POSTSPAWN” part above. That’s a local constant.
}

As usual, when modifying the UserDefined script, be careful not to override the original.
Save it under a different name.

So, what does this all mean? Like above with the sneaky guy, I’ll use an example. Say we
want to spawn in a creature sitting down on the floor (for a long time).

1. Change the UserDefined script to this:

//::///
//:: Name x2_def_userdef
//:: Copyright (c) 2001 Bioware Corp.
//:://
/*
 Default On User Defined Event script
*/
//:://
//:: Created By: Keith Warner
//:: Created On: June 11/03
//:://
const int EVENT_USER_DEFINED_PRESPAWN = 1510;
const int EVENT_USER_DEFINED_POSTSPAWN = 1511;
void main()
{
 int nUser = GetUserDefinedEventNumber();
 if(nUser == EVENT_HEARTBEAT) //HEARTBEAT
 {

 }
 else if(nUser == EVENT_PERCEIVE) // PERCEIVE
 {
 }
 else if(nUser == EVENT_END_COMBAT_ROUND) // END OF COMBAT
 {
 }
 else if(nUser == EVENT_DIALOGUE) // ON DIALOGUE
 {
 }
 else if(nUser == EVENT_ATTACKED) // ATTACKED
 {
 }
 else if(nUser == EVENT_DAMAGED) // DAMAGED
 {
 }
 else if(nUser == 1007) // DEATH - do not use for critical
code, does not fire reliably all the time
 {
 }
 else if(nUser == EVENT_DISTURBED) // DISTURBED
 {
 }
 else if (nUser == EVENT_USER_DEFINED_PRESPAWN)
 {
 ActionPlayAnimation(ANIMATION_LOOPING_SIT_CROSS, 1.0,
99999.9);
 }
 else if (nUser == EVENT_USER_DEFINED_POSTSPAWN)
 {
 ActionPlayAnimation(ANIMATION_LOOPING_SIT_CROSS, 1.0,
99999.9);
 }

}

2. Save it as a different name.

3. Now in the Variables window for the creature enter
“X2_USERDEFINED_ONSPAWN_EVENTS” in the Name field, 3 in the Value field,
and click “Add.”

4. Save the creature. Again, that’s all there is to it.

What’s the difference between a PRESPAWN and POSTSPAWN event?

Good question, and to tell the truth, I have no idea. The whole idea of a PRESPAWN
event baffles me. (How are you supposed to trigger an event from something that doesn’t
exist in the game yet?)

Notice up in the example UserDefined script where we made the NPC sit that I used the
ActionPlayAnimation function in both places and set the variable to 3 so that both the
PRE and POST spawn fire. That’s because I couldn’t figure out what the difference was
and when to use one and not the other—so I just used both. Safe in this case, though I

suppose their might be a case where that would break something.

If anyone can explain the difference to all of us that would be appreciated, I’m sure.

What are all these other variables in the “x2_inc_switches” file?

The “x2_inc_switches” file holds tons of groovy stuff. This is where the spellhooking
system is explained for instance, and also the place where you can look to find out how to
set variables on the module to change the core rules and other things.

I’m not going to go into all that stuff (partly because I’m not that familiar with all the
“x2_inc_switches” goodies yet, and partly because I just wanted to go over OnSpawn
variables.) Maybe later, when I understand it better... or even better, maybe someone will
beat me to it.

Anyway, I hope that helps clear up some confusion regarding the HotU OnSpawn and
Variables window.

EDIT: Gah. I just saw that I incorrectly called "x2_inc_switches" "x2_def_switches" by
accident in several places. I tried to fix all of them, but in case I missed some, anywhere
you see "x2_def_switches", it should read "x2_inc_switches."

Based on Jassper’s post I did some experimentation. (Thanks Jassper. And thank you too,
Beerfish.)

Here’s an example of when you might want to use a PRESPAWN event:

Example:

I want an encounter trigger that will spawn a guard. If the PC is unarmed, the guard will
be friendly to the PC. If the PC is armed, I want the guard to spawn in Hostile and in
Stealth mode.

1. From the palette Copy Edit a sneaky type. (I used a Drow Assassin.)

2. Change the Faction to Merchant. Depending on the original blueprint, you may need to
change the OnSpawn script to “x2_def_spawn” and the UserDefined script to
“x2_def_userdef.” (NOTE: We’re going to alter “x2_def_userdef” anyway, so you don’t
really need to do that, but it’s easier to explain this way.)

3. Edit “x2_def_userdef” to the following (take a look at the comments in the script):

//::///
//:: Name x2_def_userdef
//:: Copyright (c) 2001 Bioware Corp.
//:://
/*
 Default On User Defined Event script
*/

//:://
//:: Created By: Keith Warner
//:: Created On: June 11/03
//:://
const int EVENT_USER_DEFINED_PRESPAWN = 1510;
const int EVENT_USER_DEFINED_POSTSPAWN = 1511;
void main()
{
 int nUser = GetUserDefinedEventNumber();
 if(nUser == EVENT_HEARTBEAT) //HEARTBEAT
 {
 }
 else if(nUser == EVENT_PERCEIVE) // PERCEIVE
 {
 }
 else if(nUser == EVENT_END_COMBAT_ROUND) // END OF COMBAT
 {
 }
 else if(nUser == EVENT_DIALOGUE) // ON DIALOGUE
 {
 }
 else if(nUser == EVENT_ATTACKED) // ATTACKED
 {
 }
 else if(nUser == EVENT_DAMAGED) // DAMAGED
 {
 }
 else if(nUser == 1007) // DEATH - do not use for critical code, does not fire
reliably all the time
 {
 }
 else if(nUser == EVENT_DISTURBED) // DISTURBED
 {
 }
 else if (nUser == EVENT_USER_DEFINED_PRESPAWN)
 {
 object oPC = GetFirstPC();
 object oItem1 = GetItemInSlot(INVENTORY_SLOT_RIGHTHAND, oPC);
 object oItem2 = GetItemInSlot(INVENTORY_SLOT_LEFTHAND, oPC);
 // Check to see if the PC is carrying any weapons
 if ((oItem1 == OBJECT_INVALID) && (oItem2 == OBJECT_INVALID))
 // If the PC isn't carrying any weapons, spawn in normally.
 return;
 else
 {
 // If the PC is carrying weapons, change the faction to hostile.
 ChangeToStandardFaction(OBJECT_SELF, STANDARD_FACTION_HOSTILE);
 // Spawn in stealthed. Notice that this is the same variable we
 // would have used in the variables window to spawn a stealthed
 // creature. We're setting it here instead of the variables window
 // because we want to test first to see if it should be set or not. This
 // is where the PRESPAWN event comes in useful.
 // Notice also, that the variables are set on OBJECT_SELF. This fact
 // isn't obvious when using the Variables window.
 SetLocalInt(OBJECT_SELF, "X2_L_SPAWN_USE_STEALTH", 1);
 }
 }
 else if (nUser == EVENT_USER_DEFINED_POSTSPAWN)
 {
 // Were not using a custom POSTSPAWN event.
 }

}

4. Save this script with a new name.

5. Under the Advanced tab. Click on Variables. Enter
X2_USERDEFINED_ONSPAWN_EVENTS in the Name field and 1 in the Value field.

Click Add.

6. Now create a custom encounter using our new stealthy creature and draw it in your
area. Place the spawn point and do all the sorts of things you would usually do with an
encounter trigger.

7. Try it out.

A few comments on the script above: You may notice while testing it that the spawned in
creatures (if you’ve spawned in more than one) will also attack each other as well as the
PC. This is because this isn’t really a good use of the ChangeToStandardFaction function.
Our guard/assassin creatures should have had a custom faction tweaked so that they
ignored HOSTILE creatures, and used the SetReputation function instead. (In my
example we started them out as Merchants who will attack Hostiles.) I only did it this
way to make a quick and simple example without having to go through the faction editor.

Georg Zoeller Makes some Notes:
Two things:

1) 1.62 will have an update to CreateObject to copy variables over from the templates.
This means that variables set in the toolset will now be present on any creature that is
created dynamically using CreateObject. In 1.61 toolset variables are only present in
placed creatures. Yay!

2) You can modify all spawnconditions of a creature by putting an integer variable called
"NW_GENERIC_MASTER" on the creature and put the correct value calculated from
the values below:

int NW_FLAG_SPECIAL_CONVERSATION = 0x00000001;
int NW_FLAG_SHOUT_ATTACK_MY_TARGET = 0x00000002;
int NW_FLAG_STEALTH = 0x00000004;
int NW_FLAG_SEARCH = 0x00000008;
int NW_FLAG_SET_WARNINGS = 0x00000010;
int NW_FLAG_ESCAPE_RETURN = 0x00000020; //Failed

int NW_FLAG_END_COMBAT_ROUND_EVENT = 0x00004000;

int NW_FLAG_ESCAPE_LEAVE = 0x00000040;
int NW_FLAG_TELEPORT_RETURN = 0x00000080; //Failed
int NW_FLAG_TELEPORT_LEAVE = 0x00000100;
int NW_FLAG_PERCIEVE_EVENT = 0x00000200;
int NW_FLAG_ATTACK_EVENT = 0x00000400;
int NW_FLAG_DAMAGED_EVENT = 0x00000800;
int NW_FLAG_SPELL_CAST_AT_EVENT = 0x00001000;
int NW_FLAG_DISTURBED_EVENT = 0x00002000;

int NW_FLAG_ON_DIALOGUE_EVENT = 0x00008000;
int NW_FLAG_RESTED_EVENT = 0x00010000;
int NW_FLAG_DEATH_EVENT = 0x00020000;
int NW_FLAG_SPECIAL_COMBAT_CONVERSATION = 0x00040000;
int NW_FLAG_AMBIENT_ANIMATIONS = 0x00080000;
int NW_FLAG_HEARTBEAT_EVENT = 0x00100000;
int NW_FLAG_IMMOBILE_AMBIENT_ANIMATIONS = 0x00200000;
int NW_FLAG_DAY_NIGHT_POSTING = 0x00400000;

int NW_FLAG_AMBIENT_ANIMATIONS_AVIAN = 0x00800000;
int NW_FLAG_APPEAR_SPAWN_IN_ANIMATION = 0x01000000;
int NW_FLAG_SLEEPING_AT_NIGHT = 0x02000000;
int NW_FLAG_FAST_BUFF_ENEMY = 0x04000000;

So if you want a creature to use be in search and stealth mode on spawning and to use
ambient animations, you can set "NW_GENERIC_MASTER" to
0x00000004 +
0x00000008 +
0x00080000 =

0x0008000C = 524300

http://www.statman.info/conversions/hexadecimal.html

You need to put the value as decimal (the bold value) on the creature. You can use windows
calculator (switch to scientific mode) to calculate the hex numbers together and then convert them
to decimal mode.

Antimagic Tutorial
By Huntsman29

http://nwn.bioware.com/forums/viewtopic.html?topic=317782&forum=47

HotU Wandering Monster System
Checklist by Georg Zoeller

Checklist:
a) check the default module OnLoad script (x2_mod_def_load)

b) check the default module OnRest script
(x2_mod_def_rest) as well as the rest script used by the official campaign for HotU (I
think it's x2_onrest).

c) IIRC, the rest script actually has an explanation which variables you want to set on an
area

d) You need to check des_restsys.2da (or so), the 2da file which has the "template"

definitions for wandering monsters

e) x2_inc_restsys.nss IS the official rest system. Its commented so reading through it
should give you some ideas.

Primarily by RainMan

Finally it's working and since there're a few who still don't understand how this works
here comes a (hopefully) easy guide:

Copy and save the following as "des_restsystem.2da" in your override folder:
(see: http://nwn.bioware.com/forums/viewtopic.html?topic=329600&forum=47&sp=15)

This is the original HoTU file with a single line added by me (#22). Just modify my line
and add new ones and your HoTU single player should keep working pretty fine. Maybe
in some future patches this file will be modified by Bioware so be aware that this could
break your single player rest system.

Go to your Module properties, Events Tab and edit the "x2_mod_def_load" script which
should be located in the "onLoad" event. The script could already be modified and
renamed by whoever made the module, in that case i can't help you. You can try to edit
the default script and copy the needed part of code to your script. You need to un-
comment this line which is one of the last lines in that script:

SetModuleSwitch (MODULE_SWITCH_USE_XP2_RESTSYSTEM, TRUE);

The next IF instruction will then load the 2da and so initialize the rest system.

Next step is to make sure you are using the "x2_mod_def_rest" script as your onRest
event script, well only a part of it is needed. As with the onLoad event you maybe have
renamed the script or totally erased, but if not there is not much more to do.

The last thing you need to do is to go in the Advanced tab of every area's property
window and add a "string" variable (the little button at the end of the page) called
"X2_WM_ENCOUNTERTABLE", set that variable to the name of the encounter you
whish to spawn in that area. You can get the name from the "TableName" in the 2da file,
some exampled: Cave, Undermountain1Central (or Misc which is the line i added). This
done you are ready to go. There are a few other variables you can set in the same way. A
"int" variable called "X2_WM_AREA_USEDOORS" which can set the use of doors by
the monster spawn routine or another "int" called "X2_WM_AREA_LISTENCHECK"
which sets the listen check DC which you need to beat to wake up earlier and not get
ambushed.

You don't need the custom 2da for it to work that's optional without it it will default to
the stock one which is fairly basic.

1) Uncomment line 108 of x2_mod_def_load

2) Make sure you have x2_mod_def_load in the OnModuleLoad Event

3) Make sure you have x2_mod_def_rest in the OnPlayerRest Event

4) Open an area Edit>Properties>Advanced>Variables add this variable
X2_WM_ENCOUNTERTABLE string Forest and you will get deer or dogs.

Also you can add WMSetAreaProbability(oArea, 99, 99); at line 35 of x2_mod_def_rest,
99 being the % chance of an encounter(99% for testing purposes).

I added a few lines to my code which enable to set the probability of an encounter in-
game, just in case you need the same encounter to fire in one area with it's default
probability and in another area with a different probability. It's all based on the
"WMSetAreaProbability" function included in the WM system but not used in the onrest
event.

Just include this in your onrest script, right before the WM system decides to fire the
encounter, should be an IF with this condition: !WMStartPlayerRest(oPC)

int iDayProb = GetLocalInt(oArea, "X2_WM_PROBABILITY_DAY");
int iNightProb = GetLocalInt(oArea, "X2_WM_PROBABILITY_NIGHT");
if (iDayProb > -1 && iNightProb > -1)
 WMSetAreaProbability(oArea, iDayProb, iNightProb);

Now you can use the two int variables "X2_WM_PROBABILITY_DAY" and
"X2_WM_PROBABILITY_NIGHT" to set a value between 0 and 100 in your area
properties for a custom spawn probability just in that area.

Be warned that both variables have to be set or the WMSetAreaProbability function won't
be called, i didn't need a more powerful code so i didn't bother to code it better than this,
though it could easily be "upgraded" to allow only one variable to be set.

Ambient Simulation System
By Ayath

http://nwvault.ign.com/View.php?view=Scripts.Detail&id=2433

VI. Appendix I

How do I close a door automatically after it has been
opened?

by Jassper

Closing a door automatically is quite simple. However there is one thing to keep in mind.
Closing doors can become very annoying to the players. I suggest only closing doors that
are Area Transitions or lead into a large area. Also you will want to make the delay
before it closes reasonable. This way PCs aren’t constantly opening the same door so
they can fight a creature that is on the other side.

Add this script to the doors OnOpen script handle. Change the number 15.0f to whatever.
This is the delay in seconds before the door closes. OBJECT_SELF represents the object
that the script is attached to. In this case, the door.

///
// Auto-Close Door
///
void main()
{
 DelayCommand(15.0f,ActionCloseDoor(OBJECT_SELF));
}
// End

How do I make my doors Close and lock?
This can be done with the script above with just on added line of code. Keep in mind that
the door can’t lock until after it is closed. So the Lock command must be delayed as well.

Add this script to the doors OnOpen script handle. Change the number 15.0f to whatever.
This is the delay in seconds before the door closes. The Word TRUE will lock the door.
FALSE will Unlock the door. OBJECT_SELF represents the object that the script is
attached to. In this case, the door.

///
// Auto-Close Door / Lock Door
///
void main()
{
 DelayCommand(15.0f,ActionCloseDoor(OBJECT_SELF));
 DelayCommand(15.5f,SetLocked(OBJECT_SELF,TRUE));
}
// End

How do I make my NPC Open / Close a Door?
If this is done through a Conversation then is just a matter of applying the script in the
“Actions Taken” script handle. NOTE: Remove the nw_walk_wp script from the End
Conversation Normally script handle in the convo node. More on this latter.

Place this script in the Actions Taken handle on the text node that you want the NPC to
open / close a door. Replace the Word "DOOR_TAG" with the actual TAG of the door
you want him to open, include the quotes "". The SetLocked function is included in case
the door is locked. Your NPC will walk to the door and Open it. The script to close the
Door is very similar, however we must reverse the order of the SetLocked and Action.

///
// NPC Open Door
///
void main()
{
 object oDoor = GetObjectByTag("DOOR_TAG");
 SetLocked(oDoor,FALSE);
 ActionOpenDoor(oDoor);
}

///
// NPC Close Door
///
void main()
{
 object oDoor = GetObjectByTag("DOOR_TAG");
 ActionCloseDoor(oDoor);
 SetLocked(oDoor,TRUE);
}

How do I make a portal?

A) Portals are nothing more than a scripted transition. To make it work you need a Portal
object and a Waypoint. Make the object “usable” and place the waypoint in the location
you want your PCs to port to. Give the Waypoint a Unique tag. For this example I’ll call
it WP_ARRIVE.

Place the following script in the OnUsed script handle of the portal.

///
// Port PC
///
void main()
{
 object oPC = GetLastUsedBy(); // Get the user of the object
 object oDest = GetObjectByTag("WP_ARRIVE"); // way point
tag.
 if(GetIsPC(oPC))
 {
 AssignCommand(oPC,JumpToObject(oDest));

 }
}

Note: If the Waypoint is in the same area, Henchmen, Familiars, and pets will have a
hard time finding their master. That would require additional scripting. If the Waypoint is
in a different area, then there should be no problem with followers. They should make the
jump by default.

///
//Place in "Actions Taken" of the NPCs first convo node

///
void main()
{
 object oChair = GetNearestObjectByTag("Chair");
 //Make sure no one is in chair, if not sit-down.
 if(!GetIsObjectValid(GetSittingCreature(oChair)))
 {
 ClearAllActions(); //This is so he don't spin in his chair,
following you.
 ActionSit(oChair);
 }

How do I make my NPC sit.
This is possible many ways. The most common however is to place this line of code in
the NPCs OnSpawn script. This assumes your not changing the Tag of the chair. Also
make sure the chairs are Non-Static. If you want the change the tag of the default chair
then simply replace the word "Chair" in the script with your custom tag. Include the "".

Add this line to the OnSpawn script of the NPC you want to sit. Be sure to re-save the
script under a different name.

ActionSit(GetNearestObjectByTag("Chair"));

NOTE: Be sure to place this after the WalkWaypoints(); function call. Otherwise the
WalkWaypoints may clear his action to sit.

How do I make my NPCs stay seated while talking

This again can be handled several ways. But the simplest is to use a version of the above
function in the Root text (first line) of the NPC.

Place this script in the "Actions Taken" script handle on the first line of the NPCs
conversation. Note: you must remove the nw_walk_wp script from the "End
Conversation Normally" script handle found in the "Current File" Tab or the NPC will
stand up at the end of the conversation.

//Make sure tag is correct and remove the nw_walk_wp
//script from the End Conversation Normally handle.

}
//End

How do I take gold from a PC in a conversation? How do I
make sure he has enough to Pay?

This is fairly simple to do, the harder part seems to be getting the Conversation right. One
thing to keep in mind when doing a conversation is that the line you don’t want displayed
unless a certain condition is met comes before, lets call it the Default line. Take a look at
the example.

+Root
NPC – Hello, it will be 50 gold for a slap in the face.
PC – Ok. Pay 50 gold.
NPC – You don’t have enough money.
PC – [End Dialog]
NPC – Great! <Slap>
PC – Thanks! [End Dialog]
PC – No Way![End Dialog]

We don’t want the line NPC – You don’t have enough money. to appear unless he has
enough gold to pay. So that’s were we will put the check, in the "Starting Condition" of
the text node.

Place this script in the "Text Appears When" hook of the text line you don’t want to show
unless the PC don’t have enough money to pay.

int StartingConditional()
{
 object oPC = GetPCSpeaker();
 if(GetGold(oPC) < 50) // Set the gold amount you want.
 {
 return TRUE; // Return TRUE if he has less than expected
amount
 }
 return FALSE; // return FALSE otherwise. (do not display
text)
}

If the above script is TRUE then that text node will show to the PC instead of the one
below it. If it is FALSE, then the next text line will appear.

Now we need to take the gold, if he has enough. In the “Actions Taken” script handle of
the NPC – Greate! <Slap> text node place the following script.

//
// Take Gold from PC
//
void main()

{
 TakeGoldFromCreature(50, GetPCSpeaker(), TRUE);
}
//End

This is a simple script from the script wizard. It takes 50 gold from the PC speaking to
the NPC and then destroys it. If you want the NPC to keep the gold then change the
TRUE to FALSE.

How do I make my NPC recognize me when I talk to him a
second time.

This can all be done in the script wizard. Make your conversation as follows.
+Root
NPC – Hello, we meet again.
NPC – Hello, I am NPC and you never met me.
----- PC Ok.

On the first text node (Hello, we meet again.) click on the "Text Appears When" tab and
click the wizard hat.
Click on the "Local Variables" box and put a mark in it, click next.
In the first blank box, Enter a name like "WeMet" (no quotes). In the next blank box enter
a number, 1 is usually good. Click the "Add" button and then "Next" and then done.
Now, in the next Text node, the one you want to appear first (Hello, I am NPC and you
never met me.). Click on the "Actions Taken" tab. Click on the little wizard hat and select
"Set Local Variables", click Next.
In the first empty box type the SAME NAME as you used in the other wizard. For this
example I used "WeMet" (again, no quotes). In the Next blank box enter the SAME
NUMBER you gave it the first time, in this case 1. Click “Add” and then Next, then
Finish.

Now when your PC talks to the NPC they will get the text node "Hello, I am NPC and
you never met me." Your conversation can branch from there. The next time the PC talks
to the NPC he will say the first text node, "Hello, we meet again".

NOTE: It is important that you include a PC response. Even if it is a "End Dialog".
Scripts that are attached to a NPCs "Actions Taken" script handle will not trigger unless a
PC has a text line to click on. If there is no PC response line the NPC will say his last line
and the Dialog ends, skipping the Actions Taken script.

Why is CreateObject giving me badgers?

One of the finer points about spawning objects using CreateObject is that the
"sTemplate" parameter refers to the object's blueprint resref, not the object's tag. Most of
BioWare's objects have matching tags and resrefs, but objects and creatures you create
yourself in the toolkit probably won't.

What is the blueprint resref, you ask? It's like the tag, but it is unique for every object in

the toolkit's template. It can be found on the "Advanced" tab of your object's properties.

WARNING: If you've created an object using "Edit Copy..." (for example, to make some
changes to a previously-existing creature), don't trust what you see on the "Advanced"
tab. To get the resref, place your object in the toolset, right-click on it, select edit, and
look on the Advanced tab for the resref.

How do I let PCs sit in chairs?

Make the chairs "usable" and place the following script in the "OnUsed" Script handle.

Note: This script can also be placed in the OnUsed of an Invisible Object. This object can
then be placed on other tings. Place 2 on a bench so more than one person can sit down.

//
//Function: Use on placeables so PCs can sit.
//Ver: 1.0
//Modified by:
//Date:
///
//Place this script in the OnUsed handler of the object
///
void main()
{
 object oChair = OBJECT_SELF;
 //Make sure no one is in chair, if not sitdown.
 if(!GetIsObjectValid(GetSittingCreature(oChair)))
 {
 AssignCommand(GetLastUsedBy(),ActionSit(oChair));
 }
}
//End

In the Toolset, Click on the Monster Icon, then Custom. Right Click on anything, then
select "New". Or, In the tool bar Click "Wizards" and select "Creature Wizard". The
Creature Wizard should now be open.

Click "Next". Select Human from the List, click next, and then Next again. Click "Select
Portrait" and in the Portrait window, click on the "Placeables Objects and Doors". Scroll
though the pictures and select either the Archery Target (PLC_FO1_) or the Combat

NOTE: If the invisible Object is used, Most TileSet Benches, bar stools Don't have a
"Front". You will need to play with the position of the invis object to get the PC to sit in
the correct direction. If the object in directly on top of (for Example) the Bar stool. PCs
will always Face East when they sit on it. Simply slide the invis object off the stool until
it falls to the ground. (kinda "half-on / half-off" the stool), The PC should then sit
correctly, although they will be sitting on the edge of the stool.

How do I make a Combat Dummy?

Dummy (PLC_F08_), Click OK. Click Next and select "Hostile" Faction and Click Next
again. Change the Name to Training Dummy, Combat Dummy, Archery Target, or
whatever you like. Click Next.

Now you need to find a Place for it. I would suggest sticking it under "Special", Click the
+ and select one of the Customs (1-5). Click Next and Next again. Click on the "Launch
Creature Properties" and Click Finish.

Pull Down the Drop Down Menu and scroll Up until you find the Archery Target or
Combat Dummy Appearance. Select on and then Click the "Statistics" TAB. In the
Movement Rate Box in the lower right, select "Immobile". Click the "Scripts" TAB and
remove all the scripts. That step may not be necessary, but will save on some more
advanced problems, like the Archery Target "following" you as you walk by.

If you don't want it to be Destroyed, Select the "Plot" option in the Advanced TAB or
give it a lot of Hit points.
When your done making your adjustments, Click OK.

Now your new Combat target / dummy should be listed in your Custom Creature list.
Select it and place it on the map.

How can PCs gain XP for training at a Combat Dummy /
Target.

Build a Combat Dummy or Archery target as described above. Remove all the scripts on
it and make sure it is NOT Plot. Give it a fair amount of Hit Points to keep it from being
destroyed after one hit. Also, for harder targets to hit, increase the AC on the Dummy.

Place this script in the OnPhysicalAttacked and OnSpellCastAt nodes to keep the
Dummy from Attacking back.

//::///
//:: patchnoattack
//:: Copyright (c) 2001 Bioware Corp.
//:://
/*
 Derrick's script to make combat dummies not attack
 you.
*/
//:://
//:: Created By:
//:: Created On:
//:://
void main()
{
 object oPC = GetLastAttacker();
 SetIsTemporaryFriend(oPC,OBJECT_SELF,FALSE,0.001);
 DelayCommand(0.001,SetIsTemporaryEnemy(oPC));

}

And place the XP script in the OnDamaged node
void main()
{
 int nXP = 2; // amount of xp per damage point
 int nXPMax = 2000; // Max amount of xp a PC can get from the
Dummy
 int nMaxLevel = 3; // Max level the PC can be to still gain
xp from betting up a Dummy
 int nDam = GetTotalDamageDealt();
 object oPC = GetLastDamager();
 if(GetIsPC(oPC) && GetHitDice(oPC) <= nMaxLevel &&
GetLocalInt(OBJECT_SELF,GetName(oPC)) < nXPMax+1)
 {
 GiveXPToCreature(oPC,nDam*nXP);

SetLocalInt(OBJECT_SELF,GetName(oPC),GetLocalInt(OBJECT_SELF,GetN
ame(oPC)) + nDam*nXP);
 // Heal the dummy so it don't get destroyed

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(nDam),OBJECT
_SELF);
 }
 else
 {
 SendMessageToPC(oPC,"You have exceeded Level
"+IntToString(nMaxLevel));
 SendMessageToPC(oPC,"Or you have gained
"+IntToString(nXPMax)+" amount of xp");

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(nDam),OBJECT
_SELF);
 }
}

The script is just a simple/basic XP giveing script and it heals
the Dummy so it don't get destroyed. Alter / Modify the script as
needed.

Note: The PC will be able to move to a different Dummy and start
gaining XP again off the new dummy. If you want the PC to only
gain nXPMax total. Then use this script.

void main()
{
 int nXP = 2; // amount of xp per damage point
 int nXPMax = 2000; // Max amount of xp a PC can get from the
Dummy
 int nMaxLevel = 3; // Max level the PC can be to still gain
xp from betting up a Dummy
 int nDam = GetTotalDamageDealt();
 object oPC = GetLastDamager();
 if(GetIsPC(oPC) && GetHitDice(oPC) <= nMaxLevel &&
GetLocalInt(GetModule(),"Dummy"+GetName(oPC)) < nXPMax+1)
 {

 GiveXPToCreature(oPC,nDam*nXP);

SetLocalInt(GetModule(),"Dummy"+GetName(oPC),GetLocalInt(GetModul
e(),"Dummy"+GetName(oPC)) + nDam*nXP);

}

aka "The Goblin-Ear Dilemma"

// "goblin_ear".

 // Heal the dummy so it don't get destroyed

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(nDam),OBJECT
_SELF);
 }
 else
 {
 SendMessageToPC(oPC,"You have exceeded Level
"+IntToString(nMaxLevel));
 SendMessageToPC(oPC,"Or you have gained
"+IntToString(nXPMax)+" amount of xp");

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(nDam),OBJECT
_SELF);
 }

Same script. It just recorded the variable differently.

How do I get an NPC to take more than one of the same
item from a PC's inventory?

Good call for this thread -- this one comes up a lot, because the Script Wizard in the
conversation editor doesn't really handle cases like this.

What you need to do is loop through every item in the PC's inventory looking for your
item, and perform an action on each one you find.

Two functions make it easy to loop through the whole inventory:
GetFirstItemInInventory and GetNextItemInInventory.

Here's an example of how to use them to reward a PC for every item they have with the
tag "goblin_ear":

// This script goes in the "Actions Taken" tab of a
// conversation. It will reward the PC 10 gold and
// 10 XP for every item they possess with the tag

void main()
{
 // First, get the PC being spoken to
 object oPC = GetPCSpeaker();
 // Now, find the first item in that PC's inventory
 object oItem = GetFirstItemInInventory(oPC);
 // Start the loop. The next statement says to
 // stay in the loop until "oItem" no longer points

 // to a valid object. This will happen as soon as

 {

 // Statements within these brackets will
 // be run for each item that matches the
 // "goblin_ear" tag.
 // The next two lines give the rewards:
 // 10 gold and 10 XP.
 GiveGoldToCreature(oPC, 10);

 NOTE: as with all NPC movement try not to make them

//:://

#include "nw_i0_plot"
void main()
{
// Remove FALSE to make them RUN
 AssignCommand(OBJECT_SELF, EscapeArea(FALSE));
}

A simple way to check for Items in a "Text Appears When" script mode is to use the
GetNumItems(). This is a bit easier than going threw the Inventory and "counting" each
item.

 // we've looped through every one of the PC's items.
 while (GetIsObjectValid(oItem))

 // Check the tag on the current item
 if (GetTag(oItem) == "goblin_ear")
 {

 GiveXPToCreature(oPC, 10);
 // Now take the ear from the PC. Note that
 // this doesn't really take the ear and give
 // it to the NPC; it just destroys it. Why
 // do NPCs give money for these things,
 // anyway? Who wants a bunch of rotting ears
 // in their pockets?
 DestroyObject(oItem);
 }
 // Now move on to the next item
 oItem = GetNextItemInInventory(oPC);
 } // End while loop
} // End script

How do I get a NPC to leave after I finish a conversation?
Put this in the OnActionsTaken at the end on the conversation file.

/*
 Does an escape area to a waypoint named NW_EXIT
 by walking.

 move more than 20 meters for a pathfind.
*/

//:: Created By: Brent@Bioware
//:: Created On: December
//:://

How do I get an NPC to Check for more than 1 of the same
item in a PC's inventory? option 2

This need to be in the "Text Appears When" Script node of the Text line you want to
appear to the PC if he/she has the correct amount of said Item. Change "ITEM_TAG" to
that of the Item you are looking for and set nMarkCount to the number of items you want.

#include "nw_i0_plot"
int StartingConditional()
{
 //check inventory of oPC for oQuestItem and get iNumItems
 string sMark = "ITEM_TAG";
 int nMarkCount = 2;
 object oMark = GetObjectByTag(sMark);
 if(GetNumItems(GetPCSpeaker(),sMark) >= nMarkCount)
 return TRUE;
 return FALSE;
}

If you want to take the Items in the "Action Taken" node of the next Text node. We can
use TakeNumItems().

Place this script in the "Actions Taken" of the next NPC response. Again change
"ITEM_TAG" to that of the Item your looking for and set nMarkCount to the number of
Items to take.

#include "nw_i0_plot"
void main()
{
 string sMark = "ITEM_TAG"; // Enter tag of your Item
 object oMark = GetObjectByTag(sMark);
 int nMarkCount = 2; // Change to num Items you want
 if(GetNumItems(GetPCSpeaker(),sMark) >= nMarkCount)
 {
 TakeNumItems(GetPCSpeaker(),sMark,nMarkCount);
 // Uncomment the following line to Give the PC an Item
Also
 // CreateItemOnObject("item_ResRef",GetPCSpeaker(),1);
 }
}

Sample Conversation

+Root
-NPC: "I see you have 2 Items" [Text appears When script]
---PC: "Yes I do"
-----NPC:"Thanks" [Actions Taken]
-NPC: "I need you to get 2 Items"
---PC: "Ok, Be right back"

How do I make sure the PCs have a certain Item in
possession before they are allowed to rest?
In the Module properties under the "Events" tab is a script handle marked OnPlayerRest.
This is where you can make scripts to do things to the PC when they start to rest, end

their Rest, or Cancel their rest.

This is a basic script that will check for an Item the PC must have to be able to rest. The
Item in this example is FOOD. Change that to the TAG of the item you are looking for.
Or you can eliminate / add to the list.

void main()
{
 object oPC = GetLastPCRested();

 if(!GetIsObjectValid(oFood))
 {
 // This will prevent him from resting
 AssignCommand(oPC,ClearAllActions());
 // Add more conditions here.
 }
 }
}

This actually quite simple. First you must make an Item to be used as a Map that the PC
can buy / find. Give it a Tag something like "MAP" or "MapToSewers". In fact you can
make one for each area if you want.

Place this script in the OnEnter of Each area you want the show the PC if they have a
map. Change the word MAP to that of the Item TAG of your map for that area.

void main()
{
 object oPC = GetEnteringObject();
 // First lets make sure a PC entered
 if(GetIsPC(oPC))

 // Check for the map
 if(GetIsObjectValid(GetItemPossessedBy(oPC,"MAP")))
 {

 }
}

 object oFood = GetItemPossessedBy(oPC,"FOOD");
 if(GetLastRestEventType() == REST_EVENTTYPE_REST_STARTED)
 {

NOTE: Canceling the PCs rest in this fashion will also trigger the
REST_EVENTTYPE_REST_CANCELLED

How do I show the Entire Map to the PC if they buy a map
from a merchant like in the OC?

 {

 ExploreAreaForPlayer(OBJECT_SELF,oPC);
 }

For multiple areas and Maps you can use the Same script in the OnEnter of each area so
you don't have 10 different map scripts. However the coding is a bit more complex. We
need to make sure the PC has the map for the area they are currently in. In this script you
will need to specify the Area TAG for each map check.

void main()
{
 object oPC = GetEnteringObject();
 // First lets make sure a PC entered
 if(GetIsPC(oPC))
 {
 // Check for the map A
 if(GetIsObjectValid(GetItemPossessedBy(oPC,"MAPA")))
 {

ExploreAreaForPlayer(GetObjectByTag("MAPA_Area_Tag_Hear"),oPC);
 }
 // Check for map B
 if(GetIsObjectValid(GetItemPossessedBy(oPC,"MAPB")))
 {

ExploreAreaForPlayer(GetObjectByTag("MAPB_Area_Tag_Hear"),oPC);
 }
 // Check for map C
 if(GetIsObjectValid(GetItemPossessedBy(oPC,"MAPC")))
 {

ExploreAreaForPlayer(GetObjectByTag("MAPC_Area_Tag_Hear"),oPC);
 }
 }
}

Of course there are other, more advanced ways to do multiple maps but if you only have
a few, this is the easiest to understand and use.

Also Note: Do NOT tag your maps with the same tag as the area. Although it may work
when you test it, chances are it won't work after adding more areas. The reason is how
GetObjectByTag() works. It may get the area (which is what we want) or it may Get the
Map item on the PC. which is what we don't want.

Finally, if you simply want to explore the area for a PC with no map, use this

void main()
{
 object oPC = GetEnteringObject();
 if(GetIsPC(oPC))
 {
 ExploreAreaForPlayer(OBJECT_SELF,oPC);
 }
}

How can I make it so that after the conversation the NPC
will turn back and face a certain Direction
Doing this really require no scripting, it's already there for you. We just need to make it
work.

Place your NPC and face him in the desired direction. Note the NPC TAG. I'll call my
NPC tag, "NPC_TAG". Place a Post in the same location and also face that in the
direction you want your NPC to face. Right Click on the Post and Select "Properties".
Enter POST_ plus the tag of your NPC. So mine would look like this, POST_NPC_TAG.

Now open the NPCs conversation and click the last Tab in the bottom right called
"Current File". In the End Conversation Normally and Aborted nodes you will see a
script named nw_walk_wp. This script is the default for "WalkWaypoints". This script
may not be attached to your module If you don't see the "preview" of the script in the
window below it, Do the following if you have not already done so. (Note: you should
only need to do this once per module) Select the nw_walk_wp and Click EDIT. Click
some place in the script, hit space then backspace, then click save. The nw_walk_wp
script should now appear in the preview window and it will be added to your scripts list
on the left.

Now, after a Conversation the NPC will turn and face the Direction of his post, and he
will also return to it after combat.

NOTE: This was a problem after patch 1.25 (I believe) when Bioware added this script so
NPCs walking waypoints would continue to walk them after a Conversation. However as
stated before, the script is not attached to the module unless that too has been fixed.
Also note: The nw_walk_wp script will Clear the actions of a NPC. Any scripts attached
to the "Action Taken" of a ending conversation node that affects the NPC may fail. If you
are having problems getting a "Actions Taken" script to function, try removing the
nw_walk_wp script from the End Conversation Node.

How do you use Waypoints with NPCs?
This is all done in the toolset for any basic Waypoint walking NPC.

1) Place your NPC where you want him/her/it to start at.
2) Right Click on the NPC and select "Create Waypoint".
3) Keeping the NPC Selected (Green box around it). Right click where you want the NPC
to walk to first and select "Create Waypoint".
4) Right click again where you want him to move too next, select "Create Waypoint"
5) Continue doing this until the path you want the NPC to take is complete. Make sure
the NPC is "Selected" the entire time you are adding waypoints.

Look in the Left side bar under Waypoints and you will see all the Waypoints you just
added. Should look something like this.
WP_TagOfNPC_01
WP_TagOfNPC_02
WP_TagOfNPC_03
Ect.

NOTE: Make sure each NPC that is walking waypoints have a Unique Tag. If you Place

5 guards and they all have the same tag, lets say GUARD, then ALL 5 Guards will walk
the SAME set of waypoints. Unless this is what you want them to do, Change the Tag of
each one you want to walk a different set of Waypoints.

You Can Add Waypoints Manually by Following the Naming convention as shown
above. Place down your Waypoint and Change the Tag to WP_TAGofNPC_01
incrementing the Number by 1 for each additional Waypoint.

This is handy for making NPCs Cross Transition boarders.
Example:
I place a guard in Area 1 and have the following waypoints. (Guard Tag is GUARD)
WP_GUARD_01
WP_GUARD_02
WP_GUARD_03
Now I want the Guard to continue into Area2. So in area 2 I place 3 waypoint and change
each TAG of the Waypoint to the following:
WP_GUARD_04
WP_GUARD_05
WP_GUARD_06
Now my NPC guard will walk back and forth between Area1 and Area2.

Known Issue
If there are NO PCs in the area, NPCs become lazy and they don't want to continue
walking there Waypoints. Sometimes the NPCs will leave Area1 into Area2 and not
return until the PC enters Area2.

What function do "#include" or "<span..." do??
As per the Lexicon;

#include

This declaration is used to load any external code libraries that might be needed
by a script (any other *.nss file). It needs to be placed above any code that uses
the functions which will be loaded, but it is generally good practice to place
#include directives at the top of a script before any code.

#include statements have only the file's name, surrounded by text qualifiers
(double quote characters), without the file extension.

Since it is a compiler directive and not an actual code statement, a #include does
not have a ending semicolon.

// top of script
#include "NW_I0_GENERIC"

Previously compiled scripts that use the recompiled include will need to be
recompiled as well before showing changes.

From the Toolset, Build > Build Module is a quick way to recompile multiple
scripts in this situation.

Note: if you attempt to comment out a #include with a multiline comment ("/*"
and "*/"), the compiler still attempts to include the specified file. Use the single
line comment ("//") instead.

Basically, a #include tells the script to "Also look at" said script, or "include" it's contents
with this script.

For example, look at this script:

int PCIsInArea(object oArea)
{
 object oOcup = GetFirstObjectInArea(oArea);
 while(GetIsObjectValid(oOcup))
 {
 if(GetIsPC(oOcup))
 return TRUE;
 oOcup = GetNextObjectInArea(oArea);
 }
 return FALSE;
}
void main()
{
 if(PCIsInArea(OBJECT_SELF))
 {

 }

Notice this line int PCIsInArea(object oArea) At the top of the script. This is a custom
function that I have made to use in my scripts. It is included with the void main() part of
the script.

Instead of doing this each time I need that function, I can put the int PCIsInArea(object
oArea) part into it's own file, usually with a bunch of other custom functions and then
simply tell my void main() script to include it. Like this:

#include "my_function" // or what ever I name the file
void main()
{
 if(PCIsInArea(OBJECT_SELF))
 {
 // do something
 }
}

 // do something

}

Now the function PCIsInArea() is available to this script.

How do you give each entering PC an Item as they enter
the Module for the First time?

You can place a script in the OnClientEnter of the Module. This will trigger each time a
PC enters the game and NOT trigger each time a NPC spawns in. This is how it is
different from a Normal Area or Trigger OnEnter.

Place the Following script in the OnClientEnter of the Module. It will check each
entering PC for the Item first. If they don't have one, it gives them one.

void main()
{
 object oPC = GetEnteringObject();
 if(!GetIsObjectValid(GetItemPossessedBy(oPC,"TAG_OF_ITEM"))
&& GetIsPC(oPC))
 {
 CreateItemOnObject("res_ref_of_Item",oPC,1);
 }
}

You will need to add your Items TAG and RESREF in the appropriate places.

Can Waypoints Run Scripts?
Waypoints themselves can't run scripts, no.
It's probably easiest to simply paint down a trigger and use the OnEnter to run a script.

However, if you look in the nw_i0_generic Include file, Under the WalkWaypoints
function. You will see a Line like this, That has been commented out.
//ActionDoCommand(SignalEvent(OBJECT_SELF, EventUserDefined(2)));

I haven't tried it yet but I'm sure if you Uncomment that line, it will fire a UD event on
the NPC walking at each waypoint.

I have a script that Adds an Effect to a PC. How do I
remove it?
Removing effects is difficult if not done properly. Not only must the Effects be applies
properly, but the must also be removed properly. To remove an effect you must loop
through all the effects on a PC, find the one you want, and then remove it.

(See Above “Adding and Removing Effects” for more info)

What does "!" mean in a Script?
! has a few different names... bang operator, inverse operator, exclamation-point function
thingy, etc. Its general purpose is to call the opposite of whatever it is you're doing.
GetIsObjectValid(oTarget) will return TRUE if oTarget is a valid object.
!GetIsObjectValid(oTarget) will return TRUE if oTarget is (b)not a valid object.
Likewise "if (GetLocalInt(oTarget, sName) == 2)" will only fire if the int is set to 2. "if
(GetLocalInt(oTarget, sName) != 2)" will only fire if the int is set to anything but 2.

What's the difference between sDest and oidDest?
(The line in question follows: object oidDest = GetObjectByTag(sDest);)

sDest has been defined as a String, denoted by the "s".
oidDest has been defined as a Object.
object oidDest = GetObjectByTag(sDest); is looking for an Object, declared as oidDest
with the matching TAG of sDest.

object is the function type. The function will return a Object or INVALID.
oiDest is what you are nameing the return value. This could be anything you want to call
it. it could very well be oHenry if you want.
= equals, not to be confused with the Boolean operator of "==" which mean IS equal TO.
GetObjectByTag(sDest) Function. Returns a object with the specified tag. If there is more
than on object with the same tag, the function will "get" the first on it comes to starting in
the last area added to the Module. See "GetObjectByTag()" in the Lexicon for more
information.

sDest is a string variable defined somewhere in the script. Usually towards the Top. Lets
say sDest is equal to "Fred". So the line could have been GetObjectByTag("Fred");
; End of function call. This tells the compiler that your done with that line and it moves to
the next. Keep in mind that loops (for, while, do, ect) Don't have a ; at the end.

How can I make my NPC sit Cross-legged and NOT get up
when talked to?

The Easy way

Add this Line at the Bottom of the NPC OnSpawn script.
ActionPlayAnimation(ANIMATION_LOOPING_SIT_CROSS, 1.0, 10000.0f);

And add this Script to the First NPC Text line in the "Actions Taken" Script node.

void main()
{

ActionPlayAnimation(ANIMATION_LOOPING_SIT_CROSS,1.0,10000.0f);
}

Make sure all the "Other actions" are on Default. If the NPC has a Post or Waypoint,
remove the nw_walk_wp script from his "End Conversation Normally / aborted" script
nodes.

To make him stand up again, simply issue him a ClearAllActions();

Side Effects: Sometimes, depending on when heartbeat hits and the PC clicks the NPC,
the NPC might stand and then sit right back down. Not a prob for most cases.

The more complex but solid way
Create a Invis Object and give it the same name and Portrait of the NPC. Place it right
next to the NPC. Lets give it a Tag of "Talker" and MOST IMPORTANT, make it NON-
Static. Uncheck the "static" box and leave "usable" UNCHECKED.

Attach the NPCs Conversation to the Object in the Advanced tab in the "Conversation"
box. Remove the Convo from the NPC.

As before, Add this line to the NPCs OnSpawn script
ActionPlayAnimation(ANIMATION_LOOPING_SIT_CROSS, 1.0, 10000.0f);
(Do Not use place the script from above in the actions taken of the Convo.)

Replace the NPCs OnConversation Script with this script

//:://
//:: Created By: Preston Watamaniuk
//:: Altered by Jassper
//:: Created On: Oct 24, 2001
//:://
//:: Keeps the NPC sitting down during a convo
//
#include "NW_I0_GENERIC"
void main()
{
 int nMatch = GetListenPatternNumber();
 object oShouter = GetLastSpeaker();
 object oIntruder;
 object oSpeaker =
GetNearestCreature(CREATURE_TYPE_PLAYER_CHAR,PLAYER_CHAR_IS_PC);
 if (nMatch == -1 && GetCommandable(OBJECT_SELF))
 {
 //ClearAllActions();
 //BeginConversation();

AssignCommand(GetObjectByTag("Talker"),ActionStartConversation(oS
peaker));
 SetFacingPoint(GetPosition(oSpeaker));
 }
 else
 if(nMatch != -1 && GetIsObjectValid(oShouter) &&
!GetIsPC(oShouter) && GetIsFriend(oShouter))
 {

 if(nMatch == 4)
 {
 oIntruder = GetLocalObject(oShouter,
"NW_BLOCKER_INTRUDER");
 }
 else if (nMatch == 5)
 {
 oIntruder = GetLastHostileActor(oShouter);
 if(!GetIsObjectValid(oIntruder))
 {
 oIntruder = GetAttemptedAttackTarget();
 if(!GetIsObjectValid(oIntruder))
 {
 oIntruder = GetAttemptedSpellTarget();
 if(!GetIsObjectValid(oIntruder))
 {
 oIntruder = OBJECT_INVALID;
 }
 }
 }
 }
 RespondToShout(oShouter, nMatch, oIntruder);
 }
 if(GetSpawnInCondition(NW_FLAG_ON_DIALOGUE_EVENT))
 {
 SignalEvent(OBJECT_SELF, EventUserDefined(1004));
 }
}

Now the NPC should stay on his rump and the Convo is actually Triggered from the Invis
Object.

NOTE: any Actions or other scripts in the Convo Effecting the NPC will no longer work.
They will need to AssignCommand(oNPC... The Invis Object in now the OWNER or
OBJECT_SELF of the Convo.

As before, if you wish the NPC to stand, issue a ClearAllActions() to him/her.

How does the OnHeartbeat Function?
OnHeartbeat functions will fire every 6 seconds no matter what. Even on areas that
players are not in. And even on object, creatures, or NPC's in areas that players are not in.

It is believed that OnHeartbeats on Areas that players are not in may only fire about every
20 seconds or so

I have a script in the "Actions Taken" at the end of a
Conversation, but when the conversation end the NPC just
stands there as if the script is not triggered.

There are 2 things that can cause this. If you Conversation ends on a NPC text node, and
the "Actions Taken" script is on that Text node the script probably won't fire. Always
include a PC response to any NPC text node containing a "Actions Taken" script. The PC
response can be as simple as "Ok" or "End Dialog".

The other thing that it can be is the Bioware script "nw_walk_wp". This script is meant to
make a NPC return to, or re-start the WayPoint walk. However, this function also makes
a call to ClearAllActions();. So any ending script in the "Actions Taken" will be cleared
by the WalkWaypoint Call. Be sure to remove the nw_walk_wp script from the "End
Conversation Normally / Aborted" script handles, they can be found in the "Current File"
tab of the Conversation editor. If the NPC needs to return to walking waypoints, then
make sure all the NPCs actions are complete Before the Convo ends.

A switch/case is a simplified "if" type of statement. Best utilized when checking a lot of
conditions. For example, I could have,

int nRan = Random(10); //returns a random number between 0 and 9
if(nRan == 0)
 {
 //Do stuff
 }

What is a switch/case ?

if(nRan == 1)
 {
 //Do stuff
 }
if(nRan == 2)
 {
 //Do stuff
 }
if(nRan == 3)
 {
 //Do stuff
 }
if(nRan == 4)
 {
 //Do stuff
 }
if(nRan == 5)
 {
 //Do stuff
 }
if(nRan == 6)
 {
 //Do stuff
 }
if(nRan == 7)
 {
 //Do stuff
 }
if(nRan == 8)

 {
 //Do stuff
 }
if(nRan == 9)
 {
 //Do stuff
 }

Or I could replace all that with a switch/case, like this,

switch (Random(10))
 {
 case 0:
 //Do stuff
 break;
 case 1:
 //Do Stuff
 break;
 case 2:
 //Do stuff
 break;
 case 3:
 //Do Stuff
 break;
 case 4:
 //Do stuff
 break;
 case 5:
 //Do Stuff
 break;
 case 6:
 //Do stuff
 break;
 case 7:
 //Do Stuff
 break;
 case 8:
 //Do stuff
 break;
 case 9:
 //Do Stuff
 break;

One thing to remember is that you can't define variables inside a case statement unless
you use curly brackets. {}

switch (Random(10))
 {
 case 0:
 {
 //Define variables
 break;
 }
 case 1:
 {
 //Define variables
 break;

 }

A switch/case is best used when each "case" is short, like setting an int.

int nTalent
switch (Random(10))
 {
 case 0:
 nTalent = 5;
 break;
 case 1:
 nTalent = 10;
 break;
//ect

Keep in mind that this eliminates the use of the "else" statement. As soon as one of the
case statements return true, the code in that case is executed and the switch exits and the
rest of the script is executed.

The break; statement forces the switch to exit. You can leave the break statement out if
you want but then the code will run down the entire list of case even after finding a case
statement that is TRUE.

For example, lets say int i = 3. If we build a switch/case like this:

switch(i)
 {
 case 1:
 //this will not execute
 case 2:
 //this will not execute
 case 3:
 //this WILL execute
 case 4:
 //this WILL execute
 }

case 4 will execute because case 3 returned TRUE, and without a break; statement the
switch assumes all others after it are also TRUE. (basically speaking) Sometimes this can
be used as a desired effect.

The case number that returns TRUE and is executed is the number that is equal to the
switch result. So if you count by Tens, your case numbers would also count by tens. For
example, lets say int i can equal either 10, 20, or 30. Our switch/case would look like this.

switch (i)
{
case 10:
//Do stuff
break;
case 20:
//Do stuff
break;

case 30:
//Do stuff
break:
}

I just re-installed NWN. Do I have to re-play all the
chapters again to unlock them?
AND
How can I open all the chapters in my Toolset without
having to play them all?
Go to C:\NeverwinterNights\nwn\ and open the file named "nwnplayer.ini" notepad.
Under the Heading [Game Option] add this line exactly CODEWORD=hacktastic. That
will unlock all chapters of the OC.

To open them in the Toolset. Select "Open Existing module". At the bottom of the
Module list screen click on the button "Campaign Modules" All chapters should now be
listed in the box above.

What’s the Basics for making a Merchant?
The Basics of it is fairly simple now with the addition of the Store Setup Wizard, no
scripting required.

1) Select and place a NPC in your Module. Right click on the NPC and select "Setup
Store". The Store Setup Wizard should appear.

2) The wizard gives you a NPC text line and 2 possible PC responses. The First line is
what the NPC says when a player Clicks to talk to the NPC. You can edit it here if you
like. The Next 2 lines are the players 2 options. Either "Yes. I'd like to see what you have
for sale." or "No, thanks." Both of these can be edited here also. NOTE: you can still edit
the conversation normally from the conversation editor.

3) At the bottom of the first screen you have 2 places for files names. You can use the
ones that the Wizard gives you or edit them now. The first file name is for the Shop
keepers Conversation file. You may want to re-name it now so you can Identify it later if
need be. The second file name is for the name of the script that opens the store when the
player selects "Yes. I'd like to see what you have for sale." You may also want to indicate
what NPC merchant this is for.

4) Click "Next".

5) Now you need to choose a store. this can be done using the "Pre-made" stores or one
of your own design. For this example I will select General Store from the standard list.
The "New" button will create a new empty store in the custom list, that you can add what
items you want to. The "Edit Copy" button will make a Copy of the standard store you

select. This too will be placed in the Custom list and you can add to or take things out of
that store.

6) After you have chosen your store, click "Next". and then "Finish". You will notice a
Waypoint placed where the NPC is standing and it will also appear under "Merchants" in
the Left side bar.

That’s basically all there is to it.

Who do I make my NPC say something while in combat?
1 - Uncomment the line, SetSpawnInCondition(
NW_FLAG_SPECIAL_COMBAT_CONVERSATION); in the NPCs OnSpawn Script,
save it with a new name.

2 - Make a Conversation file for the NPC. If the NPC already has one, then add a Text
line as the very first thing the NPC says. Make this as a on-liner with no response.

4 - In the "Text Appears When" script node for that new text Line, drop down the Script
menu and select this script, nw_d2_gen_combat

Now when in combat, the NPC will speak that line.

How could I easily add multiple journal entries upon the
player entering the module?
Adding journal entries is simple and can be done in any scripting node. The Script
command is AddJournalQuestEntry() which can be added to any script or used in a script
you create. To add Multiple journal entries you would simply have multiple
AddJournalQuestEntry() lines in the script.

Here is an example on how to add Journal entries when a PC enters the Module. Note that
there is not a check to see if the PC already has this entry. It is really not needed as the
entry will not add a second time if the PC already has it.

void main()
{
 object oPC = GetEnteringObject();
 if(GetIsPC(oPC))
 {
 AddJournalQuestEntry("Quest_1",10,oPC);
 AddJournalQuestEntry("Quest_2",10,oPC);
 }
}

In the script, replace "Quest_1" and "Quest_2" with the name(s) of your Journal entries
(include the quotes). The Number 10 is the Entry ID number. Change that to which ID of
the Entry you want the PC to have. You can include as many AddJournalQuestEntry()'s

as you need.

There is a bit more to that command. I suggest looking it over in the Lexicon. The script
above can be modified to override any older quest entries and the script applied to a
trigger or conversation
(More Info NWNLexicon:
http://www.reapers.org/nwn/reference/compiled/function.AddJournalQuestEntry.html)

void main()

How do I know what Journal Entry the PC has?
There is a variable set each time a PC gets a entry update. This can be checked by adding
the entry ID number to the constant NW_JOURNAL_ENTRY.

In the Example script, I check to see if the PC has the Entry Quest_1 with the ID number
25

{
 object oPC = GetEnteringObject();
 string sQuestToken = "Quest_1";
 if(GetLocalInt(oPC, "NW_JOURNAL_ENTRY" + sQuestToken) == 25)
 {
 //Do whatever
 }
}

The String sQuestToken can be changed to your Journal Entry name. The next script is an
example on how to find out what there last journal entry was.

void main()
{
 object oPC = GetPCSpeaker();
 string sQuestToken = "Quest_1";
 int nEntry = GetLocalInt(oPC, "NW_JOURNAL_ENTRY" +
sQuestToken);
 //Add coding here
}

nEntry will be equal to the last ID number added.
This type of thing would be handy during conversations to determine what Text node to
display, or what quest Entry ID to add next.

What's the fastest way to tie the respawn of a PC to a
specific way-point?
Simple. Add a Waypoint with the Tag "NW_DEATH_TEMPLE" in the location you
want the PCs to respawn, no scripting changes needed.

How do I make a lever actually do something?
This is a custom function, that when placed in the OnUsed of a lever, will play it's
animation and return a TRUE (ON) or FALSE (OFF) state to the script. You can either
add it to a include file, or simply add it to the top of your void main() script as in the
example.

When using a lever, be sure to set it's "Initial State" to "Deactivated"

///
// Place the Lever and set it State to "Deactivated"
// Use in the OnUsed of a Lever or switch
///
int FlipSwitch(object oLever = OBJECT_SELF)
{
 //lever animation
 if (GetLocalInt(OBJECT_SELF,"nToggle") == 0)
 {
 PlayAnimation(ANIMATION_PLACEABLE_ACTIVATE,1.0,1.0);
 SetLocalInt(OBJECT_SELF,"nToggle",1);//set "ON"
 return TRUE;
 }
 else
 {
 PlayAnimation(ANIMATION_PLACEABLE_DEACTIVATE,1.0,1.0);
 SetLocalInt(OBJECT_SELF,"nToggle",0);//set "OFF"
 return FALSE;
 }
 //end level animation
}
void main()
{
 if(FlipSwitch())

 else
 {
 // Add code for OFF state, if you wish
 }

 {
 // Add code for ON state
 }

}

How do I strip a PC of all Items and Gold?
This question has been asked more times than I can count. This is the basics of how to
strip a PC using the OnEnter of a trigger, area, or OnClientEnter of a Module. Further
modification can be done for your application.

void main()
{
 object oPC = GetEnteringObject();
 if(!GetIsPC(oPC)) return;
// Check Equip Items and get rid of them
 int i;

 for(i=0; i<14; i++)
 {
 object oEquip = GetItemInSlot(i,oPC);
 if(GetIsObjectValid(oEquip))
 {
 SetPlotFlag(oEquip,FALSE);
 DestroyObject(oEquip);
 }
 }
// Check general Inventory and clear it out.
 object oItem = GetFirstItemInInventory(oPC);
 while(GetIsObjectValid(oItem))
 {
 SetPlotFlag(oItem,FALSE);
 DestroyObject(oItem);
 oItem = GetNextItemInInventory(oPC);
 }
//Take their Gold
 int nAmount = GetGold(oPC);
 if(nAmount > 0)
 {

AssignCommand(oPC,TakeGoldFromCreature(nAmount,oPC,TRUE));
 }
}

How do I make a placable start a conversation with a PC
on Use?

void main()
{
 ActionStartConversation(GetLastUsedBy());
}

Make a conversation like normal and attach it to the Placeables in the Placeables
Properties > Advanced tab. Add the following script to the Placeables OnUsed script
node.

How do I make a NPC "flee" the area after a conversation?
Place a Waypoint located where you want the NPC to move to and vanish. Give it a
Unique Tag. Note: there is a default tag called "NW_EXIT". however, if you use this a
lot, the NPC could get confused and move to the wrong one.

In the Conversation Editor, Click on the last TAB in the lower right "Current File". Place
this script in the "End Conversation Normally" script handle. You can also place it in the
"Aborted" handle if you like.

#include "nw_i0_plot"
void main()
{
 // Change FALSE to TRUE if you want the NPC to Run.
 // If you use the default Waypoint Tag of "NW_EXIT"
 // then all you need is EscapeArea();

 // Or, EscapeArea(TRUE); if you want him to Run.
 EscapeArea(FALSE, "Waypoint_Tag");
}

How do I make Floaty Text, or Speech on objects and
doors?

void main()
{
 object oPC = GetLastUsedBy();
 // For Floaty Text
 FloatingTextStringOnCreature("Your Message",oPC);
 // For Speaking a string, Text is displayed for one
Heartbeat.
 SpeakString("Your Message");
 // For a Privet message
 SendMessageToPC(oPC,"Your Message");
}

For Objects, you would place this script in the OnUsed handle. Remove the parts (or
comment out) you don't want to use.

For a Door, you can place it in the OnUsed, but usually doors that say something usually
is because it is locked. In that case you would need to place this script in the OnFailed to
open. Same as above but oPC is now GetClickingObject()

void main()
{
 object oPC = GetClickingObject();
 // For Floaty Text
 FloatingTextStringOnCreature("Your Message",oPC);
 // For Speaking a string, Text is displayed for one
Heartbeat.
 SpeakString("Your Message");
 // For a Privet message
 SendMessageToPC(oPC,"Your Message");
 // To start a Conversation
 ActionStartConversation(oPC);
}

How can I make a "Level up" Script?
This is a long over-due question that needs answered. There are several ways to do this, I
will post 2 simple scripts here that can be modified to your own needs.

The basic formula for gaining a level is this,
(((CurrentLevel +1) * CurrentLevel) / 2) * 1000
i.e. To Gain 5th level from 4th level the PC would need,
(((4 + 1) * 4) / 2) * 1000 = 10,000 XP points needed for 5th level.

Here is a Script that will allow you to level up 1 level each time an object is used.

void main()

{
 object oPC = GetLastUsedBy();
 int nCurrentL = GetHitDice(oPC);
 int nXP = (((nCurrentL + 1)*nCurrentL)/2)*1000;
 SetXP(oPC,nXP);
}

The next script is a script that will set your level to 5 as long as you are already less than
level 5. You can change the int nLevelMax to what ever you want the max level to be.

void main()
{
 object oPC = GetLastUsedBy();
 int nCurrentL = GetHitDice(oPC);
 int nLevelMax = 5;
 if(nCurrentL < nLevelMax)
 {
 int nXP = ((nLevelMax*(nLevelMax - 1))/2)*1000;
 SetXP(oPC,nXP);
 }
}

Again this is in a OnUsed of an object. If you would like to use it in a conversation then
change this line,
object oPC = GetLastUsedBy();
to this,
object oPC = GetPCSpeaker();
and place it in a "Actions Taken" script node of your conversation.

How do I use the Special Conversations mentioned in the
OnSpawn Script?
First, build the NPCs conversation using these guild lines.

+Root
[line1]NPC - "Say my greeting when I perceive a PC"
[line2]NPC - "Say my Battle cry if I'm attacked!"
[line3]NPC - "Start my normal conversation here."

NOTE: Line 1 and Line 2 CAN NOT have a PC response on them.

In the convo editor, select line one. In the "Text Appears When" script box, drop down
the menu and select the script named "nw_d2_gen_check". Click on line 2 and in the
same "Text Appears When" script node, select the script named "nw_d2_gen_combat".
Make sure Line 1 is at the top, and line 2 is just underneath. Save the convo.

Now, open the properties for the NPC. Go to the Scripts TAB and click "Edit" in the
OnSpawn script. Uncomment (remove the 2 "//") these 2 lines,
SetSpawnInCondition(NW_FLAG_SPECIAL_CONVERSATION);
SetSpawnInCondition(NW_FLAG_SPECIAL_COMBAT_CONVERSATION);

Resave the script with a new name and be sure it is attached to the NPCs OnSpawn script
node.

The NPC should say his greeting (line 1) when he sees a PC. He will repeat this line each
time a PC is perceived. If he is attacked, he should say his combat saying (line 2).

NOTE: If the NPC is already a Hostile creature, Line 1 should be a battle cry, something
like "ATTACK!" or "CHARGE!" as he will only say this once OnPerception. Line 2 will
repeat during combat.

How do I make my NPC turn and face there previous
facing after being clicked on?
Simple. Place and face your NPC however you want to. Next, in the same spot, place a
Waypoint and Tag it "POST_tagofNPC". So if the Tag of the NPC is "GUARD" your
waypoint tag would be "POST_GUARD". Point the waypoint arrow in the direction you
want the NPC to face.

Now create a conversation for the NPC. This conversation can be a One-Liner, full blow
convo, or left blank. While in the Convo editor, click the "Current File" tab and verify the
file "nw_walk_wp" script is listed in the "End Conversation Normally and Aborted"
script nodes. If not, pull down the menu and select it. Now click "Edit" to open the file.
Click anywhere in the script, hit the space bar, then back-space. Click "Save". This will
attach the script to your module. Don't ask me why you have to do this, I just know that
you do. (sometimes anyways).

Now, in game when you click on the NPC, they will face you then turn back and face the
direction of the POST after the conversation.

How do I make my NPCs motionless?
There are several options here, I'll just mention a few.
1 - You can use ApplyEffect() in the NPCs OnSPawn and apply the EffectParalyze()
effect.
Or
2 - You can do the same as above with a Blank convo or no more than a On-Liner. This
usually makes him turn fast enough that it is hardly noticed.
3 - You can also add this to the NPCs OnConversation script.

object oFace = GetWaypointByTag("POST_TAGofNPC");
SetFacing(GetFacing(oFace));

Place the same type of waypoint as mentioned above, with a tag of "POST_TagOfNPC".

There are several other way also, feel free to play with it.

How can I restrict how often PC's can rest?
This script will allow you to set how many minutes of real time must pass between rests.
Note that real time minutes and game minutes are actually the same, and the same for
seconds. The difference comes in when going from minutes to hours. This script takes
this into account with the HoursToSeconds function:

// By Orion Light
// Gets the current time in minutes as an integer
int GetTotalTimeMinutes()
{
int nTimeMinutes;// Declaring a variable
int nMinutes = GetTimeMinute();// get number of minutes
int nHours = GetTimeHour();// get hours
int nDays = GetCalendarDay();// Get days
int nMonths = GetCalendarMonth();// Get months
int nYears = GetCalendarYear();// Get years
float fMinutesPerHour = HoursToSeconds(1);// Get number of
seconds in 1 hour
int nMinutesPerHour = FloatToInt(fMinutesPerHour);// Change to
int
nMinutesPerHour /= 60;// Divide by 60 to get minutes in an hour
// If you don't do this, any variance in the module hours/minutes
can mess it up
nHours *= nMinutesPerHour;// Convert hours into minutes
nDays *= (nMinutesPerHour * 24);// Convert days into minutes
nMonths *= (nMinutesPerHour * 672);// Convert months into minutes
nYears *= (nMinutesPerHour * 8064);// Convert years into minutes
nTimeMinutes = (nMinutes + nHours + nDays + nMonths + nYears);//
Add all together
return nTimeMinutes;// The return of the function is the total
number of minutes
}
// Does not allow rest until nLimit minutes have passed
// Cancelled rest counts as rest and will reset the timer
void main()
{
int nLimit = 2;// SET NUMBER OF MINUTES ALLOWED HERE
object oPC = GetLastPCRested();// Gets the PC
int nRestType = GetLastRestEventType();// Get the last rest event
type
int nTotalTimeMinutes = GetTotalTimeMinutes();// Record the
current time
int nLastRestTimeMinutes = GetLocalInt(oPC, "lastrested");//
Check when PC last rested
int nTimeElapsed = (nTotalTimeMinutes - nLastRestTimeMinutes);//
Get the difference
int nTimeLeft = (nLimit - nTimeElapsed);// Calculate how long
left untill rest allowed
if (nRestType == REST_EVENTTYPE_REST_STARTED)// If rest just
started
 {
 if (nTimeElapsed < nLimit)// And elapsed time is less than
the limit allowed

 {
 AssignCommand(oPC, ClearAllActions());// Cancel the rest
 SendMessageToPC(oPC, "You may not rest for " +
IntToString(nTimeLeft) + " minutes");
 // Sends the PC a message
 }
 }
if ((nRestType = REST_EVENTTYPE_REST_FINISHED) && (nTimeElapsed
>= nLimit))
// If rest is finished and time elapsed is greater than time
allowed
// Prevents the timer resetting if rest was cancelled because of
the limit
 {
 SetLocalInt(oPC, "lastrested", GetTotalTimeMinutes());
 // Set the time PC rested as a local int
 }
}

There are simpler ways to do it, but this method allows feedback on how long it will be
untill being allowed to rest.

How do I combine several scripts to activate on the same
event, such as the OnHeartbeat?

void main()
{
 ExecuteScript("hartbeat_01",OBJECT_SELF);
 ExecuteScript("hartbeat_02",OBJECT_SELF);
 ExecuteScript("hartbeat_03",OBJECT_SELF);
}

The frustrating way is to copy and past all the scripts in to one and pray just before hitting
the "compile" button. Chances are, they won't compile for several reasons.

I found it much easier to do it this way instead. I'll use the OnHeartbeat handle for
example and lets say I have 3 scripts I want to combine.

1) Save each script with there own name. i.e. "hartbeat_01", "hartbeat_02", "hartbeat_03"
or whatever you desire.

2) In the Actual OnHeartbeat you want all of these to run, write a new script like this one.

That’s all there is to it! Now they each run in the OnHeartbeat of the object / area / or
module they are attached to without having to "re-script" to get them to compile.

Is there a way to define which immobile animations you
want an NPC to do?
You can use the ActionPlayAnimation(int, float, float) function.

To follow your example, you could add this to the Performers OnHeartbeat script,

ActionPlayAnimation(ANIMATION_FIREFORGET_GREETING);
ActionPlayAnimation(ANIMATION_LOOPING_GET_LOW,1.0,1.0);
ActionPlayAnimation(ANIMATION_LOOPING_GET_MID,1.0,1.0);
ActionPlayAnimation(ANIMATION_LOOPING_GET_LOW,1.0,1.0);
ActionPlayAnimation(ANIMATION_FIREFORGET_TAUNT);
ActionPlayAnimation(ANIMATION_FIREFORGET_BOW);

Here's a script my husband wrote for me that might be useful: Dynamic Sign Script, to
make it so that each sign, when used, would have a (short) floaty-text-string above it,
unique for each sign, with only one script.

//::///
//:: s_sign_onuse
//:: Dynamic Merchant Sign Script
//:: Copyright (c) 2002 David Lynch
//:://
void main()
{
 int nStart = 0;
 string sPrint = "\n";
 string sName = GetTag(OBJECT_SELF);
 string sTemp = GetSubString(sName, nStart, 1);
 while (sTemp != "") {
 if (sTemp == "_") {
 if (GetSubString(sName, (nStart + 1), 1) == "_") {
 sPrint = sPrint + "'";
 nStart++;
 } else sPrint = sPrint + " ";
 } else sPrint = sPrint + sTemp;
 nStart++;
 sTemp = GetSubString(sName, nStart, 1);
 }
 SpeakString(sPrint);
}

This is probably the most you would get into a OnHeartbeat, If it loops before the
previous OnHeartbeat actions are complete, you will soon see a lot of lag.

Note the ANIMATION_FIREFORGET* types don't need a "duration" time because it is
not used for those types. the Looping Animations need one to so the NPC knows how
long they should do the animation for.

How do I make a sign use a floaty for its name?

Make your sign "Plot" (if desired) and "Usable".
Make the NAME of your sign something generic, like "Merchant Sign".
Make the TAG of your sign be whatever text you want to float above the sign, with a
single underscore signifying a space, and a double underscore signifying an apostrophe.

Eg: Having a sign with the tag: "Tom__s_General_Store" would read: "Tom's General
Store" when a player uses that sign.

Your only limitation is that the TAG of an object only allows so many characters (I
believe something like 32), but with most sign descriptions, you won't go over that
number anyway.

Edit: Not limited to signs, this can be used for any placeable, but it's probably most
common to be used for signs and other items players can use to get a description.

How do I make the corpse face up?

void main()
 {
 object oArea = GetArea(OBJECT_SELF)
 ;
 SetLocalObject(oArea, "oSubject", o)
 ;

 ;
 }

void main()

 switch(GetUserDefinedEventNumber())
 {
 case 107
 :
 // An AREA killing an OBJECT puts the OBJECT in a
face-up position.
 ApplyEffectToObject(DURATION_TYPE_INSTANT,
EffectDeath(), GetLocalObject(OBJECT_SELF, "oSubject"))
 ;
 break
 ;

Get the Area to kill it.

Bizarre, huh. It seems that if you kill yourself, you are smacking yourself from behind,
and end up face down. Whereas if the Area kills you, it is smacking you from the front,
and you end up face up. Go figure.

For example, the creature's OnSpawn script:

 SignalEvent(oArea, EventUserDefined(107))
 ;
 return

The Area's OnUserDefined script:

 {

 }
 return
 ;
 }

You have to resurrect them

Life after death or Bioware dying, death, and Respawn
system

//::///
//:: Dying Script
//:: NW_O0_DEATH.NSS
//:: Copyright (c) 2001 Bioware Corp.

/*
 This script handles the default behavior
 that occurs when a player is dying.
 DEFAULT CAMPAIGN: player dies automatically
*/

//:: Created By: Brent Knowles

Okay, now how to I bring the corpse back to life? (he-he-
he)

void main()
 {
 object oCorpse = GetObjectByTag("YOUR_TAG")
 ;
 int iHeal = GetMaxHitPoints(oCorpse) - GetCurrentHitPoints(
oCorpse)
 ;
 AssignCommand(oCorpse, SetIsDestroyable(FALSE, TRUE))
 ;
 ApplyEffectToObject(DURATION_TYPE_INSTANT,
EffectResurrection(), oCorpse)
 ;
 ApplyEffectToObject(DURATION_TYPE_INSTANT, EffectHeal(iHeal
), oCorpse)
 ;
 return
 ;
 }

There are 5 basic scripts for OnPlayerDying, OnPlayerDeath, and OnPlayerRespawn.
They are "nw_o0_dying"(default), "nw_o0_death"(default), "x0_o0_death",
"nw_o0_respawn"(default), and "x0_o0_respawn". The 2 starting with "x0" are from the
expansions, but in essence are the same as their "nw" counter parts.

Lets start with what comes first Dying!
The OnPlayerDying script node is triggered when a PC reaches 0 hit points. The
important thing to note about this script, and actually the only thing this script does is kill
the player when the PC reaches 0 hitpoints. Lets look at the nw_o0_dying script.

//:://

//:://

//:: Created On: November 6, 2001
//:://
void main()
{
 // AssignCommand(GetLastPlayerDying(), ClearAllActions());
 // AssignCommand(GetLastPlayerDying(),SpeakString("I
Dying"));
 //
PopUpGUIPanel(GetLastPlayerDying(),GUI_PANEL_PLAYER_DEATH);
// * April 14 2002: Hiding the death part from player
 effect eDeath = EffectDeath(FALSE, FALSE);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eDeath,
GetLastPlayerDying());
}

The 3 commented out lines you see I believe are debug lines that bio left in. They are not
needed. The only lines that matter here are the effect and ApplyEffect lines. This is what
actually kills the PC, not the creature they were fighting at the time.

So once your dead, the OnPlayerDeath script fires.

//::///
//:: Death Script
//:: NW_O0_DEATH.NSS
//:: Copyright (c) 2001 Bioware Corp.
//:://
/*
 This script handles the default behavior
 that occurs when a player dies.
 BK: October 8 2002: Overridden for Expansion
*/
//:://
//:: Created By: Brent Knowles
//:: Created On: November 6, 2001
//:://
 /*
void ClearAllFactionMembers(object oMember, object oPlayer)
{
// AssignCommand(oMember, SpeakString("here"));
 AdjustReputation(oPlayer, oMember, 100);
 SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 object oClear = GetFirstFactionMember(oMember, FALSE);
 while (GetIsObjectValid(oClear) == TRUE)
 {
 ClearPersonalReputation(oPlayer, oClear);
 oClear = GetNextFactionMember(oMember, FALSE);
 }
} */
void Raise(object oPlayer)
{
 effect eVisual = EffectVisualEffect(VFX_IMP_RESTORATION);
 effect eBad = GetFirstEffect(oPlayer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectResurrection(),oP
layer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(GetMaxHitPoi
nts(oPlayer)),
oPlayer);
 //Search for negative effects
 while(GetIsEffectValid(eBad))
 {
 if (GetEffectType(eBad) ==
EFFECT_TYPE_ABILITY_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_AC_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_ATTACK_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_DAMAGE_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_DAMAGE_IMMUNITY_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_SAVING_THROW_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_SPELL_RESISTANCE_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SKILL_DECREASE
||
 GetEffectType(eBad) == EFFECT_TYPE_BLINDNESS ||
 GetEffectType(eBad) == EFFECT_TYPE_DEAF ||
 GetEffectType(eBad) == EFFECT_TYPE_PARALYZE ||
 GetEffectType(eBad) == EFFECT_TYPE_NEGATIVELEVEL)
 {
 //Remove effect if it is negative.
 RemoveEffect(oPlayer, eBad);
 }
 eBad = GetNextEffect(oPlayer);
 }
 //Fire cast spell at event for the specified target
 SignalEvent(oPlayer, EventSpellCastAt(OBJECT_SELF,
SPELL_RESTORATION, FALSE));
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eVisual,
oPlayer);
}
void main()
{
 object oPlayer = GetLastPlayerDied();
 // * increment global tracking number of times that I died
 SetLocalInt(oPlayer, "NW_L_PLAYER_DIED", GetLocalInt(oPlayer,
"NW_L_PLAYER_DIED") + 1);
 // * BK: Automation Control. Autopcs ignore death
 if (GetLocalInt(oPlayer, "NW_L_AUTOMATION") == 10)
 {
 Raise(oPlayer);
 DelayCommand(1.0, ExecuteScript("crawl", OBJECT_SELF));
 return; // Raise and return
 }

 // * Handle Spirit of the Wood Death
 string sArea = GetTag(GetArea(oPlayer));
/*

 if (sArea == "MAP_M2Q2F2" &&
GetDistanceBetweenLocations(GetLocation(GetObjectByTag("M2Q2F2_M2
Q2G")),
GetLocation(oPlayer)) < 5.0 &&
GetLocalInt(GetModule(),"NW_M2Q2E_WoodsFreed") == 0)
 {
 int bValid;
 Raise(oPlayer);
 string sDestTag = "WP_M2Q2GtoM2Q2F";
 object oSpawnPoint = GetObjectByTag(sDestTag);

AssignCommand(oPlayer,JumpToLocation(GetLocation(oSpawnPoint)));
 return;
 }
*/
 // * in last level of the Sourcestone, move the player to the
beginning of the area
 // * May 16 2002: or the main area of the Snowglobe (to
prevent plot logic problems).
 // * May 21 2002: or Castle Never
 if (sArea == "M4Q1D2" || sArea == "M3Q3C" || sArea ==
"MAP_M1Q6A")
 {
 //Raise(oPlayer);
 //string sDestTag = "M4QD07_ENTER";
 //object oSpawnPoint = GetObjectByTag(sDestTag);
// AssignCommand(oPlayer, DelayCommand(1.0,
JumpToLocation(GetLocation(oSpawnPoint))));
// * MAY 2002: Just popup the YOU ARE DEAD panel at this point
 DelayCommand(2.5, PopUpDeathGUIPanel(oPlayer,FALSE, TRUE,
66487));
 return;
 }
 // * make friendly to Each of the 3 common factions
 AssignCommand(oPlayer, ClearAllActions());
 // * Note: waiting for Sophia to make
SetStandardFactionReptuation to clear all personal
reputation
 if (GetStandardFactionReputation(STANDARD_FACTION_COMMONER,
oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 SetStandardFactionReputation(STANDARD_FACTION_COMMONER,
80, oPlayer);
 }
 if (GetStandardFactionReputation(STANDARD_FACTION_MERCHANT,
oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 SetStandardFactionReputation(STANDARD_FACTION_MERCHANT,
80, oPlayer);
 }
 if (GetStandardFactionReputation(STANDARD_FACTION_DEFENDER,
oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // *
Player bad
 SetStandardFactionReputation(STANDARD_FACTION_DEFENDER,

80, oPlayer);
 }
 DelayCommand(2.5,
PopUpGUIPanel(oPlayer,GUI_PANEL_PLAYER_DEATH));
}

 }

This script at first glance seems confusing. One thing to remember is that it has a lot of
"left-over" stuff that only pertains to the Original campaign and really doesn't differ from
the x0_o0_death script from the Hordes Campaign. If we take out all the garbage, we are
left with this.

/*void ClearAllFactionMembers(object oMember, object oPlayer)
{
 // AssignCommand(oMember, SpeakString("here"));
 AdjustReputation(oPlayer, oMember, 100);
 SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 object oClear = GetFirstFactionMember(oMember, FALSE);
 while (GetIsObjectValid(oClear) == TRUE)
 {
 ClearPersonalReputation(oPlayer, oClear);
 oClear = GetNextFactionMember(oMember, FALSE);

} */
void Raise(object oPlayer)
{
 effect eVisual = EffectVisualEffect(VFX_IMP_RESTORATION);
 effect eBad = GetFirstEffect(oPlayer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectResurrection(),oPlayer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(GetMaxHitPoints(oPlay
er)),
oPlayer);
 //Search for negative effects
 while(GetIsEffectValid(eBad))
 {
 if (GetEffectType(eBad) == EFFECT_TYPE_ABILITY_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_AC_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_ATTACK_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_DAMAGE_DECREASE ||
 GetEffectType(eBad) ==
EFFECT_TYPE_DAMAGE_IMMUNITY_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SAVING_THROW_DECREASE
||
 GetEffectType(eBad) ==
EFFECT_TYPE_SPELL_RESISTANCE_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SKILL_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_BLINDNESS ||
 GetEffectType(eBad) == EFFECT_TYPE_DEAF ||
 GetEffectType(eBad) == EFFECT_TYPE_PARALYZE ||
 GetEffectType(eBad) == EFFECT_TYPE_NEGATIVELEVEL)
 {
 //Remove effect if it is negative.
 RemoveEffect(oPlayer, eBad);
 }
 eBad = GetNextEffect(oPlayer);
 }
 //Fire cast spell at event for the specified target
 SignalEvent(oPlayer, EventSpellCastAt(OBJECT_SELF,
SPELL_RESTORATION, FALSE));
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eVisual, oPlayer);
}
void main()
{
 object oPlayer = GetLastPlayerDied();

 // * increment global tracking number of times that I died
 SetLocalInt(oPlayer, "NW_L_PLAYER_DIED", GetLocalInt(oPlayer,
"NW_L_PLAYER_DIED") + 1);
 // * BK: Automation Control. Autopcs ignore death
 if (GetLocalInt(oPlayer, "NW_L_AUTOMATION") == 10)
 {
 Raise(oPlayer);
 DelayCommand(1.0, ExecuteScript("crawl", OBJECT_SELF));
 return; // Raise and return
 }
 // * make friendly to Each of the 3 common factions
 AssignCommand(oPlayer, ClearAllActions());
 // * Note: waiting for Sophia to make SetStandardFactionReptuation to
clear all personal
reputation
 if (GetStandardFactionReputation(STANDARD_FACTION_COMMONER, oPlayer)
<= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 SetStandardFactionReputation(STANDARD_FACTION_COMMONER, 80,
oPlayer);
 }
 if (GetStandardFactionReputation(STANDARD_FACTION_MERCHANT, oPlayer)
<= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 SetStandardFactionReputation(STANDARD_FACTION_MERCHANT, 80,
oPlayer);
 }
 if (GetStandardFactionReputation(STANDARD_FACTION_DEFENDER, oPlayer)
<= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 SetStandardFactionReputation(STANDARD_FACTION_DEFENDER, 80,
oPlayer);
 }
 DelayCommand(2.5, PopUpGUIPanel(oPlayer,GUI_PANEL_PLAYER_DEATH));
}

Note that the function "ClearAllFactionMembers()" is still commented out, but left in.
This function, if used will clear the hostility of oMember towards oPlayer for custom
Factions, just as it does for the standard factions. For example, if a PC attacks a faction
that is not normally hostile to the PC, and the PC dies. When the Player respawns that
faction will still be hostile towards them. This function can be used to clear that state so
the faction is no longer hostile when the PC re-spawns. To demonstrate this we will need
to alter the OnPlayerDying script as well. Remember that the Module kills the player in
the OnPlayer Dying and to use the ClearAllFactionMembers() function we will need the
object of the Players NPC killer. Functions like GetLastkiller() or GetLastHostileActor()
are going to return the module object and not the NPC killer. More on this later.

The next function is the Raise() function. This is used to "Re-spawn" the PC if the
Automation control is set on the Player object. Looking further down in the script, under
the void main(), the first IF statement checks to see if the variable
"NW_L_AUTOMATION" is set to 10, if so, then auto-respawn the PC. We can test that
now if you like. Enter a Module and in the chat bar type ##DebugMode 1 and hit enter,
then type ##dm_setvarint NW_L_AUTOMATION 10 and hit enter. The curser will
change to a "targeter", click on your PC. Now attack something that you know can kill
your PC. YOU WON'T DIE!

After the Rasie() function we come to the void main(). First the script gets the player that
just died, then sets a variable int on that player tracking the number of times that player

died. So if you ever want to know how much a PC died during that game session, you can
use int iDied = GetLocalInt(oPlayer, "NW_L_PLAYER_DIED"); where oPlayer is the
PC object in question. This was used in certain features of Hordes I believe. If you don't
need it, you can safely take it out.

Next is the If statement we just discussed, it checks to see if the PC auto-respawn is
turned on. This mainly comes in handy for testing. This too can be removed if not in use.
Note that this block also runs a script called "crawl". This script does not exist so nothing
is called.

Further down we see 3 if blocks these set "NW_G_Playerhasbeenbad" on the Player if
they became hostile to either the Commoner, Defender, or Merchant factions then resets
these factions to friendly. This is so if the player attacks a guard for example, and gets
killed, the Player can re-spawn and not get re-attacked by the guards.

Then finally we have the delay to pop up the player GUI panel. This is the panel that
gives the player a choice of "Load", "Respawn", "Exit". Load will allow the Player to re-
load or load a different module. Exit takes the player back to the game startup screen and
Respawn will, of course, run the OnPlayerRespawn script node.

Before we move on to the OnPlayerRespawn script, lets revisit the
ClearAllFactionMembers() function and what must be done to make it work. This will
also show how to "get" the object that killed the PC instead of the Module. The quickest
way is to simply remove the OnPlayerDiying script or comment out the ApplyEffect line.
This will allow us to use GetLastHostileActor() in the OnDeath script. I should also
mention here that doing so means that the player will become "unconscious" at 0 and not
die until they reach -11 but there are ways around that as well. Now we can alter the
OnPlayerDeath script like this,

void ClearAllFactionMembers(object oMember, object oPlayer)
{
 // AssignCommand(oMember, SpeakString("here"));
 AdjustReputation(oPlayer, oMember, 80);
 SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 object oClear = GetFirstFactionMember(oMember, FALSE);
 while (GetIsObjectValid(oClear) == TRUE)
 {
 ClearPersonalReputation(oPlayer, oClear);
 oClear = GetNextFactionMember(oMember, FALSE);
 }
}
void Raise(object oPlayer)
{
 effect eVisual = EffectVisualEffect(VFX_IMP_RESTORATION);
 effect eBad = GetFirstEffect(oPlayer);
 ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectResurrection(),oPlayer);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(GetMaxHitPoints(oPlayer)),
oPlayer);
 //Search for negative effects
 while(GetIsEffectValid(eBad))
 {
 if (GetEffectType(eBad) == EFFECT_TYPE_ABILITY_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_AC_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_ATTACK_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_DAMAGE_DECREASE ||

 GetEffectType(eBad) == EFFECT_TYPE_DAMAGE_IMMUNITY_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SAVING_THROW_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SPELL_RESISTANCE_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_SKILL_DECREASE ||
 GetEffectType(eBad) == EFFECT_TYPE_BLINDNESS ||
 GetEffectType(eBad) == EFFECT_TYPE_DEAF ||
 GetEffectType(eBad) == EFFECT_TYPE_PARALYZE ||
 GetEffectType(eBad) == EFFECT_TYPE_NEGATIVELEVEL)
 {
 //Remove effect if it is negative.
 RemoveEffect(oPlayer, eBad);
 }
 eBad = GetNextEffect(oPlayer);
 }
 //Fire cast spell at event for the specified target
 SignalEvent(oPlayer, EventSpellCastAt(OBJECT_SELF, SPELL_RESTORATION,
FALSE));
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eVisual, oPlayer);
}
void main()
{
 object oPlayer = GetLastPlayerDied();
 // * increment global tracking number of times that I died
 SetLocalInt(oPlayer, "NW_L_PLAYER_DIED", GetLocalInt(oPlayer,
"NW_L_PLAYER_DIED") + 1);
 // * BK: Automation Control. Autopcs ignore death
 if (GetLocalInt(oPlayer, "NW_L_AUTOMATION") == 10)
 {
 Raise(oPlayer);
 DelayCommand(1.0, ExecuteScript("crawl", OBJECT_SELF));
 return; // Raise and return
 }
 // * make friendly to Each of the 3 common factions
 AssignCommand(oPlayer, ClearAllActions());
 // * Note: waiting for Sophia to make SetStandardFactionReptuation to clear
all personal
reputation
 if (GetStandardFactionReputation(STANDARD_FACTION_COMMONER, oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 SetStandardFactionReputation(STANDARD_FACTION_COMMONER, 80, oPlayer);
 }
 if (GetStandardFactionReputation(STANDARD_FACTION_MERCHANT, oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 SetStandardFactionReputation(STANDARD_FACTION_MERCHANT, 80, oPlayer);
 }
 if (GetStandardFactionReputation(STANDARD_FACTION_DEFENDER, oPlayer) <= 10)
 { SetLocalInt(oPlayer, "NW_G_Playerhasbeenbad", 10); // * Player bad
 SetStandardFactionReputation(STANDARD_FACTION_DEFENDER, 80, oPlayer);
 }
 object oKiller = GetLastHostileActor(oPlayer);
 ClearAllFactionMembers(oKiller,oPlayer);
 DelayCommand(2.5, PopUpGUIPanel(oPlayer,GUI_PANEL_PLAYER_DEATH));
}

Notice I changed the amount in the ClearAllFactionMembers() function from 100 to 80.
setting it at 100 will make that faction 100% (green) to the PC and if the game is set on
Non-PVP settings, the PC will not be allowed to attack that faction again. Also I added 2
lines just before the last line - DelayCommand. The First line gets the last object taking
hostile actions towards the PC and assigns it to the variable oKiller, the second line calls
the ClearAllFactionMembers() function and it uses the custom faction of the NPC
oKiller, and adjust it back to neutral towards the PC. This function too will set the
NW_G_Playerhasbeenbad variable for your custom factions if you choose to use it. Note
that care must be taken if using this function because it will set any faction to "like" the
PC, including hostile factions that should remained hostile. This can be handled by

checking the faction of the killer first and skip the Clear.

Now, oKiller will be the last creature that killed the PC and not the module. Also, when
the PC dies the faction will clear just as it does for the standard factions. Note that I used
GetLastHostileActor(oPlayer); instead of GetLastKiller(); This is because GetLastKiller()
only returns a valid object to the caller of the script. Since the OnPlayerDeath script is
attached to the module, the module is the caller. Nothing killed the module therefore
GetLastKiller() will be invalid. However, GetLastKiller() can be used if we make the
player that died call the OnDeath script via the ExecuteScript() function, but that’s for
more advanced scripting

Now I will cover the OnPlayerRespawn script and cover what happens when the Player
hits the "Respawn" button. Again there is a lot of "left Over" stuff from the OC. Here I
will post a Respawn script with a lot of the junk stripped out.

#include "nw_i0_plot"
// * Applies an XP and GP penalty
// * to the player respawning
void ApplyPenalty(object oDead)
{
 int nXP = GetXP(oDead);
 int nPenalty = 50 * GetHitDice(oDead);
 int nHD = GetHitDice(oDead);
 // * You can not lose a level with this respawning
 int nMin = ((nHD * (nHD - 1)) / 2) * 1000;
 int nNewXP = nXP - nPenalty;
 if (nNewXP < nMin)
 nNewXP = nMin;
 SetXP(oDead, nNewXP);
 int nGoldToTake = FloatToInt(0.10 * GetGold(oDead));
 // * a cap of 10 000gp taken from you
 if (nGoldToTake > 10000)
 {
 nGoldToTake = 10000;
 }
 AssignCommand(oDead, TakeGoldFromCreature(nGoldToTake, oDead, TRUE));
 DelayCommand(4.0, FloatingTextStrRefOnCreature(58299, oDead, FALSE));
 DelayCommand(4.8, FloatingTextStrRefOnCreature(58300, oDead, FALSE));
}
void main()

 {

{
 object oRespawner = GetLastRespawnButtonPresser();
 ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectResurrection(),oRespawner);

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectHeal(GetMaxHitPoints(oRespawner)),
oRespawner);
 RemoveEffects(oRespawner);
 //* Return PC to temple
 string sDestTag = "NW_DEATH_TEMPLE";
 if (GetIsObjectValid(GetObjectByTag(sDestTag)))

 if (sDestTag == "NW_DEATH_TEMPLE")
 {
 object oPriest = GetObjectByTag("NW_DEATH_CLERIC");
 //SetLocalInt(oPriest, "NW_L_SAYONELINER", 10);
 //AssignCommand(oPriest,
DelayCommand(3.0,ActionStartConversation(oRespawner)));
 AssignCommand(oPriest, DelayCommand(2.1,
PlayVoiceChat(VOICE_CHAT_TALKTOME,
oPriest)));
 SetLocalLocation(oRespawner, "NW_L_I_DIED_HERE",
GetLocation(GetLastRespawnButtonPresser()));
 SetLocalInt(oRespawner, "NW_L_I_DIED", 1);

 SetLocalObject(oPriest, "NW_L_LASTDIED",
GetLastRespawnButtonPresser());
 // * April 2002: Moved penalty here, only when going back to the death
temple
 ApplyPenalty(oRespawner);
 }
 object oSpawnPoint = GetObjectByTag(sDestTag);

 // else do nothing, just 'res where you are.
}

What does the ? mean in NW Script?
The question mark (?) is called the ternary conditional and is a form of selection, much
like an if/else assignment. The Lexicon has a brief but informative article

 AssignCommand(oRespawner,JumpToLocation(GetLocation(oSpawnPoint)));
 // * mak
 }

First we see a include file "#include "nw_i0_plot". This file holds the function
RemoveEffects() which removes all negative effects on the Player, much like the Raise()
function in the OnPlayerDeath script. Then we see a function called ApplyPenalty(). This
function is used if the NW_DEATH_TEMPLE object is placed in your module, more on
that in a bit. Next we see that the player is raised and healed and all bad effects are
removed.

In the OC game, when you respawned, the PC would transport to the temple. This can be
done in your own module as well simply by placing a waypoint, or any object for that
matter with a tag of "NW_DEATH_TEMPLE". If this object is valid, then the player will
be teleported to it on respawn AND given a respawn penalty by the ApplyPenalty()
function. If you want the player to port here, but no penalty, then simply comment out the
line ApplyPenalty(). If this object is not valid, nothing happens and the PC respawns
where they died. The object oPriest and other variables within that if block can be used if
wanted but a part of the OC and can be taken out as well. If you want to Apply the
penalty without using the NW_DEATH_TEMPLE then add else
ApplyPenalty(oRespawner); between the last 2 "}" at the end of the script.

That’s the basics of how the bioware Death and respawn system works. By altering these
3 scripts, you can do just about anything for players dying, death, and re-spawn.
Hopefully this information was helpful, enjoy

 covering the
basic syntax.

You are probably familiar with using an if/else statement to check some condition and
assign one of two values to a variable depending on the result: the ternary conditional
does the same thing using just one line! Therefore if used wisely the ternary conditional
can simplify or clarify some scripts. However it is one of the less well-known constructs
exercise caution and comment well.

For example, if you wanted check if a number was odd or even you might write the
following script:

string sResult;

if(nNumber % 2)
{
 sResult = "Odd";

else
{
 sResult = "Even";

// determine if number is odd or even using modulus

}

}

and while there is nothing wrong with that you might find it a little less cumbersome to
rewrite it using the ternary conditional:

// determine if number is odd or even using modulus
string sResult = (nNumber % 2) ? "Odd" : "Even";

You can also nest ternary conditionals: much in the same way as you can with an if/else
if/else statement. However I would generally advise against this as it tends to result in
greater confusion rather than greater clarity.

For example, if you wanted check if a number was positive, negative or zero you might
write the following script:

string sResult;

// determine if number is odd or even using modulo
if(nNumber > 0)
{
 sResult = "Positive";
}
else if(nNumber < 0)
{
 sResult = "Negative";
}
else
{
 sResult = " Zero ";
}

which again could be rewritten:
// determine if number is positive, negative or zero
string sResult = (nNumber > 0) ? "Positive" :
 (nNumber < 0) ? "Negative" : "Zero";

VII. Appendix II: Code Error Explanation
By Tarne

Many people are joining BioWare's Neverwinter Night's Community daily, so it's no
surprise more and more people are in need of C++ help.

Well, having been through this experience, I decided I should try and make this better for
people in general with a simple list of 'How the hell do I work it' rules for the technically
illiterate.

Let's begin with a list of errors and possible fixes. This is not a COMPLETE list,
however I'll try to keep the most common ones up here.

Lets start out with the most obvious one:

UNKNOWN STATE IN COMPILER.

This means, that the engine has no clue of what you're trying to do. The areas of screw-
ups you could do to cause this are huge, however there are a few awful common ones:

ONE: You're missing a closing bracket. If you open a statement, you need to close it at
the end. Let me show you:

void main()
{ //This is opening a statement
object oSelf = OBJECT_SELF(); //Declaring oSelf in this single
script to mean 'OBJECT_SELF'.
{ //Opening another statement, for no real reason.
AssignCommand(oSelf, SpeakString("Hi Mom!", TALKVOLUME_SHOUT));
}//Closing the First statement
}//Closing the Second statement

Now, a few people may read that and go "Wait, what DOES that do?". Well, lets say you
put that in a Heartbeat command on an NPC, like, say, a Badger. Ever six seconds, the
badger is going to say 'Hi Mom'. Anyway, that's a quick clarification on that.

Next:
Closing a statement in a command or anything of the
nature.

Every time you open with a '(', there needs to be a ')' somewhere in there in order for it to
compile.

Basically, it's like opening and closing the front door of your house. You open it to let
fresh air in or go outside, and you close it because you realize the neighbor's dog will be

maiming your couch in a short period of time if you don't.

A quick example:

This may evolve to:

Regardless, this isn't scripting, the computer has no clue what you're doing and it
probably wishes you would stop. Alright, those are the most common "UNKNOWN
STATE IN COMPILER". Lets move on to the next one:

ERROR: PARSING VARIABLE LIST

void main()//Open/Close! Even if you're not sure why!
{//Opening Statement
AssignCommand(GetObjectByTag("Something"), SpeakString("Hello,
I'm 'Something', but nothing in particular.", TALKVOLUME_TALK)));
}//Closing Statement

Now, you're confused again. Well, let me unconfuse you real-fast:

When you ask it to perform a function, such as 'GetObjectByTag' and retrieve
information, you need to open the function. These aren't the terms it designed in, but who
cares, as long as you understand, right? Good, shut-up and learn.

So basically: GetObjectByTag ("Something") would mean that you are asking it to find
the object tagged Something. Now when you enter the specifics of the command in for it,
you need to have the '(' opening and ')' closing of that instance.

Of course, You don't need to close EVERYTHING after EVERY instance. See how it
closes three times at the very end of the 'command'? Well, that's closing every door I
opened. I leave some doors open that're in the active function, but when you ask it to
retrieve information, you need to close the door after you tell it where to find the info.

It's like a Jehova's Witness asking for directions. You want that door closed ASAP when
you're done, if you even bothered to open it.

Next:
Bad scripting in general.

Now, here's an example of something that can't be fixed but may be tried by the
extremely computer illiterate:

make monster walk to bed

void main()
{
}
make monster wet bed

Now, first, what it means: When you see this, it means you're declaring the same variable
in two instances or you're attempting to manipulate an already declared variable to
something else.

Have no clue what I'm talking about?

Example:

void main()
{
object oBilly = GetLastUsedBy();
object oSussy = GetLastUsedBy();
}
// OR IT COULD BE...
void main()
{
object oBilly = GetLastUsedBy();
object oBilly = GetObjectByTag("Billy");
}

Okay, this can't work. Billy and Sussy aren't the same people, they aren't even the same
gender, however, they are related, they're both declared variables. The computer
recognizes this as a parsing variable because you're trying to declare it twice, so it would
get confused when one or the other was called on different instances, when you don't
even need it to do so.

SO, how do we fix this? Well, this one is easy, it involves the delete key or a simple
button press. You can't declare two of the same type of variable, nor can you write two
variables to one declaration. SO:

void main()
{
object oBilly = GetLastUsedBy();
}

Fixed the first one...

void main()
{
object oBilly = GetLastUsedBy();
object oBilly1 = GetObjectByTag("Billy");
}

Now, by deleting the extra instance or by changing the declaration name even slightly,
we fix the problem. Simple, isn't it?

Next:

ERROR: NO LEFT BRACKET

You may have one to many or one to few doors open. Double check under the rules set

above.

ERROR: NO RIGHT BRACKET

You left the door open again.

ERROR: NO SEMI-COLON AFTER EXPRESSION

A Semi-Colon, a ';' for the illiterate is used to null an ACTIVE expression.

"What the hell does that mean?"

Well, imagine you've got a baseball bat, and you're pissed off at your neighbor, so you
wail on your neighbor's car with ActionWailNeighborsCar. Well, each blow requires it's
own action, so, you have to lift the bat back up off the car, but if you don't null statement,
you'll sit there with your bat jammed in the car till the cops get there.

Example:

void main()
{
ActionOpenDoor(GetObjectByTag("CarDoor"));
}

"What does this one do?"

Well, it's an example: You see, once the door is open, we need to stop opening it, close it,
then drive away before the cops show up. So essentially, whenever you perform an
action, you'll want to stop performing it when it's done with a null statement.

ERROR: NO NULL STATEMENT AFTER "IF"

Well, you asked a question, then suddenly, before they could answer, you told them not
to, or covered your ears. The computer doesn't understand your logic, it wants to tell you
the answer, because it likes to gossip.

"What DID I do wrong?"

void main()
{
if(GetLocalInt(GetFirstPC(), "question" == 0);
}

Now, that WOULD work, in theory, had you not placed the ';' or NULL-STATEMENT at
the end of the question. In other words, don't cover your ears after asking questions.

So the solution:

void main()

{
if(GetLocalInt(GetFirstPC(), "question" == 0)
}

void main()
{
if(GetLocalInt(GetFirstPC(), "question" == 0)
if(GetLocalInt(GetFirstPC(), "question2" == 0)
}

void main()
{
if(GetLocalInt(GetFirstPC(), "question" == 0
&&(GetLocalInt(GetFirstPC(), "question2" == 0))
}

And it works, just like that.

Next:

ERROR: TOO MANY "IF" STATEMENTS

Now, this is a pain, really. You want to set it up to make sure this doesn't happen 'if' and
'if' but 'if' and 'if', well, you get the idea, right? Right.

The problem:

You're declaring two possible 'if' situations. You recognize this as being 'if' and 'if'
because you have logic, however the computer, being illogically logical, is confused by
it. It's simple to fix: You need to change it to include '&&' between the two.

Here's an example:

Just how does that work? Well, we open a door, and some other doors, but at the end of
the first instance of the 'if', we don't close the door. The same for all following possible,
we leave them open and include '&&', the double statement for making damn sure the
computer knows to include the second instance.

Next:

ERROR: UNINDENTIFIED INDENTIFER

Isn't that an oxymoron? Well, it's trying to tell you that you're using a command in the
statement that makes no sense whatsoever to it. It may be caused by a simple typo.

Example:

void main()
{
object oPC = GetPCSpeaker();

ApplyEffectToObject(DURATION_TYPE_INSTANT, EffectKnockDown, oPC,
5.0);
}

Now you may ask, "What the heck is wrong with that? Why am I getting an error?" Well,
you see, BioWare didn't include 'EffectKnockDown', they used 'EffectKnockdown', much
the same as 'EffectBlind' won't work while 'EffectBlindness' will.

So basically, you just need to double check your identifier and compare it against what
you know will work.

Sometimes, this isn't easy. You know what effects you can do, but what about visual
effects? You may go insane trying to guess them, but there's an actual list of them too!
It's in your 'Source' file in the visual.2da file.

Next:
ERROR: SKIPPING DECLARATIONS VIA "case"
DISALLOWED.

Now, this is a frustrating one to guess. It doesn't actually tell you what's wrong.
Whenever you're using a 'CASE' set-up, and you want to have a pre-defined set of
declarations, they need to come before the 'CASE'.

"What the hell are you talking about?"

Example:

void main()
{
int nVariable
{
switch(nVariable)
{
case 1:
if(GetLocalInt(GetFirstPC(),"Variable" == 0)
object oPC = GetFirstPC();
ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectKnockdown,oPC,5.0
);
break;
}
case 2:
{
if(GetLocalInt(GetFirstPC(),"Variable" == 0)
ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectBlindness,oPC,5.0
);
break;
}
}
}

Now, you may be confused, why this wouldn't work. Well, there are probably a couple of
reasons, but for the first and most prominent one, the error you're getting, is the fact
you're making a declaration in the case itself. That's not allowed, so to fix it...

Example:

So, how did I fix it? Well, I simply moved the declaration to fit inside of the first case. So
now, it works, in principle.

Next:

ERROR: MUST INCLUDE "void main" (or something like
that)

Well, if you wrote a script to be included in the main, you probably figured out what the
problem was, but then, maybe you didn't and you're reading this.

For some unknown reason, your compiler would like everything to include 'void main'. I
don't know why, I don't really care, but I'll tell you how to fix the error.

Lets say you've got a neat little script included in the main, I'll use one from Visage of
Nightmares to demonstrate:

void main()
{
object oPC = GetFirstPC();
int nVariable
 {
 switch(nVariable)
 {
 case 1:
 if(GetLocalInt(GetFirstPC(),"Variable" == 0)

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectKnockdown,oPC,5.0
);
 break;
 }
 case 2:
 {
 if(GetLocalInt(GetFirstPC(),"Variable" == 0)

ApplyEffectToObject(DURATION_TYPE_INSTANT,EffectBlindness,oPC,5.0
);
 break;
 }
 }
}

void FireDiscipline(object oPC)
{
 effect eFire1 = EffectAbilityIncrease(ABILITY_STRENGTH, 5);
 effect eFire2 = EffectAttackIncrease(10);
 effect eFire3 = EffectDamageIncrease(5,

DAMAGE_TYPE_SLASHING);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eFire1, oPC,
10.0f);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eFire2, oPC,
10.0f);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eFire3, oPC,
10.0f);
 AssignCommand(oPC, DelayCommand(10.0f, FireDiscipline(oPC)));
} //Fire Discipline

Now, you don't want this to be outside of the main, otherwise it won't work the correct
way. But you're getting a compiling error, because you need to include the 'void' for it to
compile. So how do you fix it? Just watch:

void FireDiscipline(object oPC)
{
 effect eFire1 = EffectAbilityIncrease(ABILITY_STRENGTH, 5);
 effect eFire2 = EffectAttackIncrease(10);
 effect eFire3 = EffectDamageIncrease(5,
DAMAGE_TYPE_SLASHING);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eFire1, oPC,
10.0f);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eFire2, oPC,
10.0f);
 ApplyEffectToObject(DURATION_TYPE_TEMPORARY, eFire3, oPC,
10.0f);
 AssignCommand(oPC, DelayCommand(10.0f, FireDiscipline(oPC)));
} //Fire Discipline
void main()
{
}

Now you might be sitting here with a dumbfounded look on your face, or possibly just
glaring at the computer for the illogical logic of that, but, it still works.

Now, there are other instances, when at times, you may have an error, try to add the fix to
the line with the error and it doesn't work, infact, it makes things worse.

Well, the computer isn't always the brightest... In some instances, it'll mark errors for
times when you forget 'Null-Statements' or ';' on the next line over. So if you get that
error, assume it's on the line just above the one marked as 'flawed'. Technically, that IS
the location of the error, however, the way to fix it is just above that line.

These are the most common of the errors that come to mind, and if you still can't compile
after reading these explanations, then feel free to ask the board right away, however, try
and use these fixes first.

Hope this helps a few people.

VIII. Appendix III: Waypoints Explained
By baron of gateford

WAYPOINTS USED WITH WALKWAYPOINTS (or normal waypoints)

WAYPOINTS USED WITH WALKWAYPOINTS (or normal waypoints)
There are 4 different types of waypoint to get your NPC to move around in a set pattern
via the standard Bioware Waypoint system.
WP_ , WN_ , POST_ , NIGHT_

Each waypoint has a prefix (as shown above) followed by the TAG of the NPC.
So if your NPC had a tag of SMITH then the waypoint tags would be,
WP_SMITH, WN_SMITH, POST_SMITH, NIGHT_SMITH

WP_ Waypoints: These waypoints are used to move your NPC around in the day.
WN_ Waypoints: These waypoints are used to move your NPC around at night.
POST_ Waypoints: Used to make your NPC walk to one spot and stay there at daytime.
NIGHT_ Waypoints: Used to make your NPC walk to one spot and stay there at
nighttime.

The NPC can have multiples of the WP_ and WN_ waypoints, but only one POST_ and
one NIGHT_ waypoint.

Multiples of the WP and WN waypoints have a sequence number at the end of the tag
name, so for the NPC called SMITH, the waypoints would be;
WP_SMITH_01, WP_SMITH_02, WP_SMITH_03, etc....

The POST waypoint cannot be used with WP waypoints for a given NPC.
The WP waypoints override POST waypoints. A similar rule applies to NIGHT
waypoint not being used with WN waypoint WN waypoints override NIGHT waypoint.
This means you cannot have the NPC run a set pattern of WP_ waypoints to then stand at
a POST_ waypoint.

The easiest way of getting the waypoints up and running for your npc is;

Right click on your npc and choose create waypoint.

A waypoint is created underneath or near the npc.

Move the mouse to the point on screen you want your second waypoint to appear, and
then right click, the option to create a waypoint is given. Choosing create waypoint will
create a second waypoint for your NPC. This process can be done multiple times.

To get a guard to return to his barracks at night.

If the guard has a tag of GUARD, then place a NIGHT_GUARD waypoint in the
barracks. This can be used with a sequence of WP waypoints for your guard to patrol in
the day, e.g. WP_GUARD_01, WP_GUARD_02, etc
Or it can be used with a POST waypoint tagged POST_GUARD to have him stand at his
post in the day.

To allow for cross area transitions, e.g. Barracks in one area, patrol route in
another.

You will need to set the global int X2_SWITCH_CROSSAREA_WALKWAYPOINTS
to one on the module.
To do this:
In module properties, click the advanced tab, then click variables.
Enter X2_SWITCH_CROSSAREA_WALKWAYPOINTS as an int and the value to 1.

My guard gets stuck crossing area transitions.(or is going a strange route)

You will have to experiment with this, due to some issues with the pathfinding.
If your area has more than one transition point to a second (but same) area then do not
expect your NPC to use the transition point you want.
It may be best to experiment using POST and NIGHT waypoints first to see which route
the NPC favors. Its worth knowing this, so you know why its happening, and you don't
waste too much time, like I have

My NPC is getting stuck on walls.

This is due to the AI on NPC's being set to low if a player is not in the area.
One of the best ways to get around this is to have more WP, WN waypoints if you can to
help the NPC pathfind a lot better. Obviously this won't help POST and NIGHT
waypoints, but if you know scripting you could place a script on enter of an area to check
if any players are in the area and if not, jump the NPC to its POST or NIGHT waypoint.

My NPC is not facing the same direction as his waypoint when at a POST or
NIGHT waypoint.

Right-click the Waypoint and go to variables.
Enter X2_L_WAYPOINT_SETFACING as an int and the value to 1.

My NPC is not changing to its NIGHT_ or WN waypoints at night time.

Ensure that in the onspawn script of your NPC, the following line is uncommented
(e.g. the // removed before it, and the line not displayed in green)
SetSpawnInCondition (NW_FLAG_DAY_NIGHT_POSTING);

My NPC doesn't seem to want to walk to their waypoints

In the onspawn script of your NPC ensure that following two lines are still commented
out (e.g. the // is still before the lines, and the line is displayed green)
SetSpawnInCondition (NW_FLAG_IMMOBILE_AMBIENT_ANIMATIONS);
SetSpawnInCondition (NW_FLAG_AMBIENT_ANIMATIONS);

WAYPOINTS USED WITH MOBILE AMBIENT ANIMATIONS

The following Waypoints require that mobile ambient animations be switched on at
spawn time of the NPC.
That means that the following line needs to be uncommented in the onspawn script.
(e.g. the // removed before it, and the line not displayed in green)
SetSpawnInCondition (NW_FLAG_AMBIENT_ANIMATIONS);

When mobile ambient animations is switched on for a NPC, the NPC will wander around
and interact with other NPC's that have either mobile or immobile ambient animations
switched on. They will also interact with nearby placeables. walking up to a placeable,
closing nearby doors.

Also worth noting that the NPC's will also use the same animations for mobile ambient
animations, as they do for immobile ambient animations (with a bit more moving
around).

The NPC with mobile ambient animations switched on will never wander too far from its
spawn point(starting position), always returning back to it.

The following waypoints allow for better control of your NPC's. To wander around more
between the waypoints described below, as well as the placeables the NPC comes across,
or the other NPC's, or its spawn point(start position).

Remember - The NPC's will not walk straight to these waypoints as in walkwaypoints
above but will meander amongst them(wander about them in a casual laid back way).

Generic Stop Waypoint

This waypoint is tagged "NW_STOP".
If you place a few of these in an area, lets say a city exterior for example.
If the NPC's spawned in that area have mobile ambient animations switched on, they will
walk amongst the NW_STOP waypoints. This works quite well if you want a
busy/crowded city/town feel.

So you could have a park area in the city with an NW_STOP waypoint, or/and a
NW_STOP waypoint near a market stall.
The NPC's spawned in that are will at some point in their wanderings go to these
waypoints.

Tavern Waypoint

This waypoint is tagged "NW_TAVERN".
If NPC's are spawned inside an area with the tavern waypoint, then those NPC's will
remain in the tavern and not leave it.

However, for NPC's spawned outside the tavern area, If you place a NW_STOP waypoint
inside the tavern as well (as the NW_TAVERN), The NPC's will cross the area transition
to visit the NW_STOP waypoint in the Tavern, neatly closing the door behind them on
entry/exit of the tavern/area outside.

There has been a bit of a misconception regarding this waypoint, this waypoint does not
make any new animations appear as far as I know by simply dropping it in a tavern.
Only by setting the immobile or mobile animations on an NPC in the spawn script will
the NPC move.

Shop Waypoint

This waypoint is tagged "NW_SHOP".
Like the tavern waypoint, if an NPC is spawned inside an area with the shop waypoint
then the NPC will remain in the shop and not leave it (the shop keeper/assistant I guess).

If an NPC is spawned outside the shop area, If you place a NW_STOP waypoint inside
the shop as well, the NPC will cross the area transition to visit the NW_STOP waypoint,
neatly closing the door behind them on entry/exit of the shop.

Home waypoint

This waypoint is tagged "NW_HOME".

If an npc is spawned in an area that that has a home waypoint then the NPC will class that
area as his home. What should happen is the NPC will leave the area in the day and
return to it at night. After long testing, the NPC only seemed to want to leave the area if
a player entered it, however the NPC did return back to the area at night.

Safe Waypoint

This waypoint is tagged "NW_SAFE".

Placing one of these waypoints in area, means that any injured NPC with mobile
animations will retreat to this point. Sort of like a cowering corner. NPC's will not cross
area transitions to get to a NW_SAFE waypoint. If there is not a NW_SAFE waypoint in
the same area then they will resume mobile animations.

Stealth Waypoint

This Waypoint is tagged "NW_STEALTH".

Placing one of these waypoints in an area, means any NPC with stealth capabilities that
reaches one of these waypoints, turns stealth mode on. Could be good for using in dark
caverns/dungeons etc, to have NPC disappear into and appear from the darkness.

Detect waypoint

Ok, I admit, this one I thought I'd leave you guys to figure out.......

My NPC is not wandering around even though mobile animations is switched on.

Ensure that the following line is commented out in the onspawn script of the NPC.
(e.g. the // is still before the lines, and the line is displayed green)
SetSpawnInCondition (NW_FLAG_IMMOBILE_AMBIENT_ANIMATIONS);

Can I use NW_STOP waypoints inside NW_TAVERN, NW_SHOP waypointed
areas?

The answer is yes.
You will need to place NW_STOP waypoints in the NW_TAVERN,NW_SHOP areas if
you want the NPC's outside to come and drink/shop

Creature related waypoints

As an extra, I thought I would throw this one in, I've done most of the others, so......
The following waypoint is used with the Bioware Beholder AI.

Beholder AI exit waypoint

This waypoint is tagged "X2_WP_BEHOLDER_TUNNEL"
If you look in the script "x2_ai_behold" it tells you what the waypoint is for. It explains;
Beholder will always use its eyes, unless
a) If threatened in melee, it will try to move away or float away
to the nearest waypoint tagged X2_WP_BEHOLDER_TUNNEL

So if you place a few of these waypoints around, your beholder will escape to the nearest
one. If you noticed in Chapter two of HotU these waypoints where placed on the other
side of room doors. (sneaky)

VIII. Appendix III: Important Resources
NWN Lexicon

http://www.nwnlexicon.com/
 It really doesn’t get much more important than this. This details just about
everything there is to know about NWScript. Important to know when a script won’t
work and it should and you find out the function doesn’t… er function.

NWVault Scripting University

http://nwvault.ign.com/?dir=resources/scripting
Very nice tool to learn how to script.

#nwscript
 irc.neverwinterconnections.com
 A chat room where you can get help with scripting problems.

	I. The Basics - Scripting 101
	Celowin's Scripting Tutorial Lesson I – The Basics
	SETTING VARIABLES
	Huntsmans Guide To Henchmen (Part 1) - SOU / HOTU Style
	Huntsmans Guide To Henchmen (Part 2) - One Liners, Interject
	Introduction to struct
	Get2daString and Loops
	The SoU Treasure System

	III. HOU Misc Updates
	Post-SOU Doors – Old ones don’t work
	Script Caching
	Fun With Petrify
	Adding Crafting Materials to Your Campaign
	An introduction to Tile Magic
	Apply/Remove Tilemagic from Specific Tiles
	On Hit Cast Spell
	Intelligent Weapons
	Adding Material Components to the Crafting Feats
	How to Disable Crafting Feats
	HOU Problems With Scripts That Use the DelayCommand
	Dynamic item properties
	HotU OnSpawn and Variables
	http://www.statman.info/conversions/hexadecimal.html

	Antimagic Tutorial
	HotU Wandering Monster System
	Ambient Simulation System

	VI. Appendix I
	How do I close a door automatically after it has been opened
	How do I make my doors Close and lock?
	How do I make my NPC Open / Close a Door?
	How do I make my NPC sit.
	How do I take gold from a PC in a conversation? How do I mak
	How do I make a Combat Dummy?
	How can PCs gain XP for training at a Combat Dummy / Target.
	How do I get an NPC to take more than one of the same item f
	How do I get a NPC to leave after I finish a conversation?
	How do I get an NPC to Check for more than 1 of the same ite
	How do I make sure the PCs have a certain Item in possession
	How do I show the Entire Map to the PC if they buy a map fro
	How can I make it so that after the conversation the NPC wil

	How do you use Waypoints with NPCs?
	Can Waypoints Run Scripts?
	I have a script that Adds an Effect to a PC. How do I remove
	What does "!" mean in a Script?
	What's the difference between sDest and oidDest?
	How can I make my NPC sit Cross-legged and NOT get up when t
	How does the OnHeartbeat Function?
	What is a switch/case ?
	I just re-installed NWN. Do I have to re-play all the chapte
	What’s the Basics for making a Merchant?
	Who do I make my NPC say something while in combat?
	How could I easily add multiple journal entries upon the pla
	How do I know what Journal Entry the PC has?
	What's the fastest way to tie the respawn of a PC to a speci
	How do I make a lever actually do something?
	How do I strip a PC of all Items and Gold?
	How do I make a placable start a conversation with a PC on U
	How do I make a NPC "flee" the area after a conversation?
	How do I make Floaty Text, or Speech on objects and doors?
	How can I make a "Level up" Script?
	How do I use the Special Conversations mentioned in the OnSp
	How do I make my NPC turn and face there previous facing aft
	How do I make my NPCs motionless?
	How can I restrict how often PC's can rest?
	How do I combine several scripts to activate on the same eve
	Is there a way to define which immobile animations you want
	How do I make a sign use a floaty for its name?
	How do I make the corpse face up?
	Okay, now how to I bring the corpse back to life? (he-he-he)
	Life after death or Bioware dying, death, and Respawn system
	What does the ? mean in NW Script?

	VII. Appendix II: Code Error Explanation
	VIII. Appendix III: Waypoints Explained
	VIII. Appendix III: Important Resources

